Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 280(3): L465-73, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11159030

RESUMEN

We investigated possible involvement of the actin cytoskeleton in the regulation of the L-arginine/nitric oxide (NO) pathway in pulmonary artery endothelial cells (PAEC). We exposed cultured PAEC to swinholide A (Swinh), which severs actin microfilaments, or jasplakinolide (Jasp), which stabilizes actin filaments and promotes actin polymerization, or both. After treatment, the state of the actin cytoskeleton, L-arginine uptake mediated by the cationic amino acid transporter-1 (CAT-1), Ca(2+)/calmodulin-dependent (endothelial) NO synthase (eNOS) activity and content, and NO production were examined. Jasp (50-100 nM, 2 h treatment) induced a reversible activation of L-[(3)H]arginine uptake by PAEC, whereas Swinh (10-50 nM) decreased L-[(3)H]arginine uptake. The two drugs could abrogate the effect of each other on L-[(3)H]arginine uptake. The effects of both drugs on L-[(3)H]arginine transport were not related to changes in expression of CAT-1 transporters. Swinh (50 nM, 2 h) and Jasp (100 nM, 2 h) did not change eNOS activities and contents in PAEC. Detection of NO in PAEC by the fluorescent probe 4,5-diaminofluorescein diacetate showed that Swinh (50 nM) decreased and Jasp (100 nM) increased NO production by PAEC. The stimulatory effect of Jasp on NO production was dependent on the availability of extracellular L-arginine. Our results indicate that the state of actin microfilaments in PAEC regulates L-arginine transport and that this regulation can affect NO production by PAEC.


Asunto(s)
Arginina/metabolismo , Citoesqueleto/fisiología , Depsipéptidos , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Arteria Pulmonar/metabolismo , Actinas/fisiología , Animales , Células Cultivadas , Endotelio Vascular/citología , Toxinas Marinas/farmacología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III , Péptidos Cíclicos/farmacología , Arteria Pulmonar/citología , Porcinos
2.
Membr Cell Biol ; 14(2): 263-75, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11093587

RESUMEN

Effects of Ca2+ ions on the mobilization of Ca2+ from intracellular stores of intact and permeabilized (15 microM digitonin) Ehrlich ascites tumour cells (EATC) have been compared. For permeabilized cells, the dependences of the initial rate and amplitude of Ca2+ mobilization evoked by the addition of 100 nM inositol 1,4,5-trisphosphate (IP3) on preexisting [Ca2+] were bell-shaped within a [Ca2+] range 10(-7)-10(-6) M with the maxima at [Ca2+] = 166 nM. In intact cells, different concentrations of free cytosolic Ca2+ ([Ca2+]i) were produced using low (up to 0.005%) concentrations of digitonin which selectively increased the permeability of the plasma membrane. Stimulation of cells by exogenous ATP at [Ca2+]i = 10(-8)-10(-6) M resulted in Ca2+ mobilization the rate and amplitude of which were maximal at 102-115 nM Ca2+. The experimental Ca2+ dependences were fit by a model which includes channel opening upon Ca2+ binding and transition to the inactive states upon Ca2+ binding to the closed and open channel forms. Three inactivation types (including two particular cases) demonstrate a slight priority of inhibitory binding of Ca2+ only to the open channel, but predict markedly different parameter values. We conclude that an increase in [Ca2+] can stimulate IP3-induced mobilization, but in intact EATC, deviations of [Ca2+]i from the resting level (about 100 nM) attenuate responses to the agonist stimulation.


Asunto(s)
Calcio/metabolismo , Carcinoma de Ehrlich/metabolismo , Animales , Ratones , Células Tumorales Cultivadas
3.
Membr Cell Biol ; 14(1): 97-107, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11051086

RESUMEN

Antigen-specific B and T lymphocytes make up the material grounds of immune memory, their main functional distinction from the so-called "naive" cells is due to the rapid and enhanced response to the antigen-pathogen. An essential distinction between the memory and naive T cells is different sensitivity of these two subpopulations of T lymphocytes to Ca2+-ionophores. Comparative analysis of Ca2+ responses of the immune memory T lymphocytes and naive T cells of mouse CBA/J line to the addition of Ca2+-mobilizing agents concanavalin A, thapsigargin, and ionomycin was carried out. These compounds in concentrations increasing [Ca2+]i in naive cells had no effect on [Ca2+]i in memory cells. Thus, the Ca2+ entrance into memory cells was not activated by exhaustion of intracellular resources. Estimation of intracellular resources of Ca2+, mobilized by ionomycin and thapsigargin in Ca2+ free medium has shown the absence in memory T cells of the intracellular Ca2+ pool, which may be one of factors of their resistance to ionophores. Reduction of the system of Ca2+ influx into memory T cells was shown using the SH-reagent thimerosal. Memory T cells appear to be resistant to "Ca2+ -paradox." Their incubation with 0.5 mM EDTA in the presence or absence of Ca2+ -mobilizing compounds followed by addition of 2 mM CaCl2 did not result in induction of Ca2+ influx into these cells.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Memoria Inmunológica , Linfocitos T/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Concanavalina A/farmacología , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Ionomicina/farmacología , Ionóforos/farmacología , Ratones , Ratones Endogámicos CBA , Linfocitos T/efectos de los fármacos , Tapsigargina/farmacología
4.
Membr Cell Biol ; 13(3): 357-68, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10768486

RESUMEN

Calcium ionophores are generally assumed to directly facilitate the transport of Ca2+ across the plasma membrane. The ability of Ca2+ ionophores ionomycin and A23187 to increase Ca2+ concentration in the cytosol ([Ca2+]i) in different cells was analyzed in detail using fluorescent Ca2+ probes. In fura-2-loaded cells, the dependence of the level of [Ca2+]i on ionomycin and A23187 concentrations had a complex character and could not be explained by ionophoric properties only. The Ca2+ signal induced by the Ca2+ ionophores consisted of three components. The first component was due to the activation of Ca2+ influx through native Ca2+ channels and was sensitive to drugs which inhibited the receptor-operated Ca2+ influx. The second component originated from phospholipase C-dependent mobilization of Ca2+ from intracellular stores. An additional influx of Ca2+ into the cells was activated in this case by a store-regulated mechanism. The third ionophoric component was very small at low concentrations of the ionophores. The effect of the ionophores on Ca2+ influx and Ca2+ mobilization was demonstrated on different cells such as Ehrlich ascites tumour cells, murine peritoneal neutrophils, macrophages, and T-lymphocytes. Thymocytes, neutrophils, and Ehrlich ascites tumour cells were more sensitive to the Ca2+ ionophores. Memory T-cells and brown preadipocytes were ionophore-resistant. The insensitivity to Ca2+ ionophores correlated with the absence of Ca2+ in the intracellular Ca2+ stores and the low activity of plasma membrane store-regulated Ca2+ channels.


Asunto(s)
Agonistas de los Canales de Calcio/farmacología , Ionóforos/farmacología , Animales , Calcio/metabolismo , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Células Cultivadas/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...