Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38463961

RESUMEN

Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how different neuron types respond to this kind of injury. In this study, we follow neuronal populations over several months after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI. We show that neurons that activate ATF3 upregulate stress-related genes while repressing many genes, including commonly used markers for these cell types. Using an inducible reporter linked to ATF3, we genetically mark damaged cells to track them over time. Notably, we find that a population in layer V undergoes cell death acutely after injury, while another in layer II/III survives long term and retains the ability to fire action potentials. To investigate the mechanism controlling layer V neuron death, we genetically silenced candidate stress response pathways. We found that the axon injury responsive kinase MAP3K12, also known as dual leucine zipper kinase (DLK), is required for the layer V neuron death. This work provides a rationale for targeting the DLK signaling pathway as a therapeutic intervention for traumatic brain injury. Beyond this, our novel approach to track neurons after a mild, subclinical injury can inform our understanding of neuronal susceptibility to repeated impacts.

2.
Brain ; 146(5): 2016-2028, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36342754

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of motor neurons with very few treatment options. We had previously found that motor neuron degeneration in a mouse model of ALS can be delayed by deleting the axon damage sensor MAP3K12 or dual leucine zipper kinase (DLK). However, DLK is also involved in axon regeneration, prompting us to ask whether combining DLK deletion with a way to promote axon regeneration would result in greater motor neuron protection. To achieve this, we used a mouse line that constitutively expresses ATF3, a master regulator of regeneration in neurons. Although there is precedence for each individual strategy in the SOD1G93A mouse model of ALS, these have not previously been combined. By several lines of evidence including motor neuron electrophysiology, histology and behaviour, we observed a powerful synergy when combining DLK deletion with ATF3 expression. The combinatorial strategy resulted in significant protection of motor neurons with fewer undergoing cell death, reduced axon degeneration and preservation of motor function and connectivity to muscle. This study provides a demonstration of the power of combinatorial therapy to treat neurodegenerative disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Axones/patología , Enfermedades Neurodegenerativas/patología , Superóxido Dismutasa/metabolismo , Regeneración Nerviosa , Neuronas Motoras/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Ratones Transgénicos , Superóxido Dismutasa-1
3.
Brain ; 145(7): 2586-2601, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35598161

RESUMEN

In perilous and stressful situations, the ability to suppress pain can be critical for survival. The rostral ventromedial medulla contains neurons that robustly inhibit nocioception at the level of the spinal cord through a top-down modulatory pathway. Although much is known about the role of the rostral ventromedial medulla in the inhibition of pain, the precise ability to directly manipulate pain-inhibitory neurons in the rostral ventromedial medulla has never been achieved. We now expose a cellular circuit that inhibits nocioception and itch in mice. Through a combination of molecular, tracing and behavioural approaches, we found that rostral ventromedial medulla neurons containing the kappa-opioid receptor inhibit itch and nocioception. With chemogenetic inhibition, we uncovered that these neurons are required for stress-induced analgesia. Using intersectional chemogenetic and pharmacological approaches, we determined that rostral ventromedial medulla kappa-opioid receptor neurons inhibit nocioception and itch through a descending circuit. Lastly, we identified a dynorphinergic pathway arising from the periaqueductal grey that modulates nociception within the rostral ventromedial medulla. These discoveries highlight a distinct population of rostral ventromedial medulla neurons capable of broadly and robustly inhibiting itch and nocioception.


Asunto(s)
Bulbo Raquídeo , Neuronas , Dolor , Prurito , Receptores Opioides kappa , Animales , Bulbo Raquídeo/citología , Ratones , Neuronas/fisiología , Dolor/fisiopatología , Prurito/fisiopatología , Receptores Opioides kappa/metabolismo
4.
Nat Commun ; 12(1): 2471, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931636

RESUMEN

In vertebrates, motor control relies on cholinergic neurons in the spinal cord that have been extensively studied over the past hundred years, yet the full heterogeneity of these neurons and their different functional roles in the adult remain to be defined. Here, we develop a targeted single nuclear RNA sequencing approach and use it to identify an array of cholinergic interneurons, visceral and skeletal motor neurons. Our data expose markers for distinguishing these classes of cholinergic neurons and their rich diversity. Specifically, visceral motor neurons, which provide autonomic control, can be divided into more than a dozen transcriptomic classes with anatomically restricted localization along the spinal cord. The complexity of the skeletal motor neurons is also reflected in our analysis with alpha, gamma, and a third subtype, possibly corresponding to the elusive beta motor neurons, clearly distinguished. In combination, our data provide a comprehensive transcriptomic description of this important population of neurons that control many aspects of physiology and movement and encompass the cellular substrates for debilitating degenerative disorders.


Asunto(s)
Neuronas Colinérgicas/citología , Interneuronas/citología , Neuronas Motoras/citología , Análisis de la Célula Individual/métodos , Núcleo Solitario/metabolismo , Médula Espinal/metabolismo , Transcriptoma/genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Femenino , Hibridación in Situ , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , RNA-Seq , Médula Espinal/citología , Médula Espinal/fisiología
5.
Nat Neurosci ; 24(3): 379-390, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495635

RESUMEN

The nucleus accumbens shell (NAcSh) and the ventral pallidum (VP) are critical for reward processing, although the question of how coordinated activity within these nuclei orchestrates reward valuation and consumption remains unclear. Inhibition of NAcSh firing is necessary for reward consumption, but the source of this inhibition remains unknown. Here, we report that a subpopulation of VP neurons, the ventral arkypallidal (vArky) neurons, project back to the NAcSh, where they inhibit NAcSh neurons in vivo in mice. Consistent with this pathway driving reward consumption via inhibition of the NAcSh, calcium activity of vArky neurons scaled with reward palatability (which was dissociable from reward seeking) and predicted the subsequent drinking behavior during a free-access paradigm. Activation of the VP-NAcSh pathway increased ongoing reward consumption while amplifying hedonic reactions to reward. These results establish a pivotal role for vArky neurons in the promotion of reward consumption through modulation of NAcSh firing in a value-dependent manner.


Asunto(s)
Potenciales de Acción/fisiología , Prosencéfalo Basal/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Recompensa , Animales , Calcio/metabolismo , Conducta de Ingestión de Líquido/fisiología , Femenino , Masculino , Ratones , Vías Nerviosas/fisiología , Núcleo Accumbens/fisiología , Gusto/fisiología
6.
Elife ; 72018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968565

RESUMEN

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.


Asunto(s)
Gliosis/genética , Hiperalgesia/genética , Quinasas Quinasa Quinasa PAM/genética , Neuralgia/genética , Traumatismos de los Nervios Periféricos/genética , Células Receptoras Sensoriales/enzimología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Gliosis/enzimología , Gliosis/patología , Gliosis/prevención & control , Hiperalgesia/enzimología , Hiperalgesia/patología , Hiperalgesia/prevención & control , Quinasas Quinasa Quinasa PAM/deficiencia , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microglía/enzimología , Microglía/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/enzimología , Neuralgia/patología , Neuralgia/prevención & control , Traumatismos de los Nervios Periféricos/enzimología , Traumatismos de los Nervios Periféricos/patología , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/enzimología , Médula Espinal/patología , Tacto , Transcripción Genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-21284075

RESUMEN

BACKGROUND: Decabromodiphenyl ether (DecaBDE; CASRN 1163-19-5) is a flame retardant used in a variety of manufactured products. A single oral dose of 20.1 mg/kg administered to mice on postnatal day 3 has been reported to alter motor activity at 2, 4, and 6 months of age. METHODS: To further evaluate these results, a developmental neurotoxicity study was conducted in the most commonly used species for studies of this type, the rat, according to international validated testing guidelines and Good Laboratory Practice Standards. DecaBDE was administered orally via gavage in corn oil to dams from gestation day 6 to weaning at doses of 0, 1, 10, 100, or 1,000 mg/kg/day. Standard measures of growth, development, and neurological endpoints were evaluated in the offspring. Motor activity was assessed at 2 months of age. Additional motor activity assessments were conducted at 4 and 6 months of age. Neuropathology and morphometry evaluations of the offspring were performed at weaning and adulthood. RESULTS: No treatment-related neurobehavioral changes were observed in detailed clinical observations, startle response, or learning and memory tests. No test substance-related changes were noted in motor activity assessments performed at 2, 4, or 6 months of age. Finally, no treatment-related neuropathological or morphometric alterations were found. CONCLUSIONS: Under the conditions of this study, the no-observed-adverse-effect level for developmental neurotoxicity of DecaBDE was 1,000 mg/kg/day, the highest dose tested.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Éteres Difenilos Halogenados/administración & dosificación , Éteres Difenilos Halogenados/toxicidad , Neurotoxinas/toxicidad , Efectos Tardíos de la Exposición Prenatal/patología , Pruebas de Toxicidad , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Cruzamientos Genéticos , Conducta Alimentaria/efectos de los fármacos , Femenino , Masculino , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neurotoxinas/administración & dosificación , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Análisis de Supervivencia , Natación
9.
Drug Metab Dispos ; 38(10): 1648-54, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20581093

RESUMEN

The effects of route and vehicle on blood and milk levels of decabromodiphenyl ether (DecaBDE; CASRN 1163-19-5) were investigated in the rat to assist in the design and conduct of a developmental neurotoxicity study. Blood plasma and/or milk concentrations were determined in dams, fetuses, and/or nursing pups after repeated DecaBDE administration by gavage throughout gestation or gestation and lactation using corn oil (CO) or soyaphospholipon/Lutrol F 127-water (SPL) as the vehicle. The impact of vehicle on plasma levels was also investigated in pups derived from naive dams after a single postnatal dose. This study reports for the first time fetal and neonatal plasma concentrations concurrent with those of maternal plasma and/or milk. Higher concentrations of DecaBDE were achieved in plasma and in milk with CO than with SPL. Furthermore, pups derived from dams treated with only SPL were lower in body weight, compared with those from dams treated with either CO, CO and DecaBDE, or SPL and DecaBDE. The study further shows that exposure to DecaBDE is relatively consistent across the dose range of 100 to 1000 mg/(kg · day) when administered in CO.


Asunto(s)
Sangre Fetal/metabolismo , Retardadores de Llama/farmacocinética , Éteres Difenilos Halogenados/sangre , Exposición Materna/efectos adversos , Leche/metabolismo , Pruebas de Toxicidad/métodos , Administración Oral , Animales , Animales Recién Nacidos , Aceite de Maíz/química , Relación Dosis-Respuesta a Droga , Femenino , Retardadores de Llama/toxicidad , Edad Gestacional , Éteres Difenilos Halogenados/farmacocinética , Éteres Difenilos Halogenados/toxicidad , Intercambio Materno-Fetal , Polietilenos/química , Polipropilenos/química , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...