Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Neuroimage Clin ; 43: 103626, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38850834

RESUMEN

BACKGROUND: PET imaging of the translocator protein (TSPO) is used to assess in vivo brain inflammation. One of the main methodological issues with this method is the allelic dependence of the radiotracer affinity. In Alzheimer's disease (AD), previous studies have shown similar clinical and patho-biological profiles between TSPO genetic subgroups. However, there is no evidence regarding the effect of the TSPO genotype on cerebrospinal-fluid biomarkers of glial activation, and synaptic and axonal damage. METHOD: We performed a trans-sectional study in early AD to compare cerebrospinal-fluid levels of GFAP, YKL-40, sTREM2, IL-6, IL-10, NfL and neurogranin between TSPO genetic subgroups. RESULTS: We recruited 33 patients with early AD including 16 (48%) high affinity binders, 13 (39%) mixed affinity binders, and 4/33 (12%) low affinity binders. No difference was observed in terms of demographics, and cerebrospinal fluid levels of each biomarker for the different subgroups. CONCLUSION: TSPO genotype is not associated with a change in glial activation, synaptic and axonal damage in early AD. Further studies with larger numbers of participants will be needed to confirm that the inclusion of specific TSPO genetic subgroups does not introduce selection bias in studies and trials of AD that combine TSPO imaging with cerebrospinal fluid biomarkers.

2.
Neurology ; 102(10): e209326, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669634

RESUMEN

BACKGROUND AND OBJECTIVES: Narcolepsy type 1 (NT1) is due to the loss of hypothalamic neurons that produce orexin (ORX), by a suspected immune-mediated process. Rare postmortem studies are available and failed to detect any inflammation in the hypothalamic region, but these brains were collected years after the first symptoms. In vivo studies close to disease onset are lacking. We aimed to explore microglia density in the hypothalamus and thalamus in NT1 compared with controls using [18F]DPA-714 PET and to study in NT1 the relationships between microglia density in the hypothalamus and in other regions of interest (ROIs) with disease duration, severity, and ORX levels. METHODS: Patients with NT1 and controls underwent a standardized clinical evaluation and [18F]DPA-714 PET imaging using a radiolabeled ligand specific to the 18 kDa translocator protein (TSPO). TSPO genotyping determined receptor affinity. Images were processed on peripheral module interface using standard uptake value (SUV) on ROIs: hypothalamus, thalamus, frontal area, cerebellum, and the whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS: A total of 41 patients with NT1 (21 adults, 20 children, 10 with recent disease onset <1 year) and 35 controls were included, with no significant difference between groups for [18F]DPA-714 binding (SUV/SUVr) in the hypothalamus and thalamus. Unexpectedly, significantly lower SUVr in the whole brain was found in NT1 compared with controls (0.97 ± 0.06 vs 1.08 ± 0.22, p = 0.04). The same finding between NT1 and controls in the whole brain was observed in those with high or mixed TSPO affinity (p = 0.03 and p = 0.04). Similar trend was observed in the frontal area in NT1 (0.96 ± 0.09 vs 1.09 ± 0.25, p = 0.05). In NT1, no association was found between SUVr in different ROIs and age, disease duration, severity, or ORX levels. DISCUSSION: We found no evidence of in vivo increased microglia density in NT1 compared with controls, even close to disease onset, and even unexpectedly a decrease in the whole brain of these patients. These findings do not support the presence of neuroinflammation in the destruction process of ORX neurons. TRIAL REGISTRATION INFORMATION: ClinicalTrials.org NCT03754348.


Asunto(s)
Microglía , Narcolepsia , Orexinas , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Microglía/metabolismo , Narcolepsia/metabolismo , Narcolepsia/genética , Narcolepsia/diagnóstico por imagen , Orexinas/metabolismo , Adulto , Adulto Joven , Tálamo/metabolismo , Tálamo/diagnóstico por imagen , Pirazoles , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagen , Hipotálamo/patología , Índice de Severidad de la Enfermedad , Persona de Mediana Edad , Pirimidinas , Adolescente , Receptores de GABA/metabolismo , Receptores de GABA/genética
3.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38412555

RESUMEN

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Asunto(s)
Lesiones Encefálicas , Coma Postraumatismo Craneoencefálico , Humanos , Coma/complicaciones , Coma Postraumatismo Craneoencefálico/complicaciones , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Lesiones Encefálicas/complicaciones , Hipoxia/complicaciones , Receptores de GABA/metabolismo
4.
Front Neurol ; 14: 1240383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818219

RESUMEN

Background: Cardiac arrest is the most life-threatening complication of attempted suicide by hanging. However, data are scarce on its characteristics and outcome predictors. Methods: This retrospective observational multicentre study in 31 hospitals included consecutive adults admitted after cardiac arrest induced by suicidal hanging. Factors associated with in-hospital mortality were identified by multivariate logistic regression with multiple imputations for missing data and adjusted to the temporal trends over the study period. Results: Of 450 patients (350 men, median age, 43 [34-52] years), 305 (68%) had a psychiatric history, and 31 (6.9%) attempted hanging while hospitalized. The median time from unhanging to cardiopulmonary resuscitation was 0 [0-5] min, and the median time to return of spontaneous circulation (ROSC) was 20 [10-30] min. Seventy-nine (18%) patients survived to hospital discharge. Three variables were independently associated with higher in-hospital mortality: time from collapse or unhanging to ROSC>20 min (odds ratio [OR], 4.71; 95% confidence intervals [95%CIs], 2.02-10.96; p = 0.0004); glycaemia >1.4 g/L at admission (OR, 6.38; 95%CI, 2.60-15.66; p < 0.0001); and lactate >3.5 mmol/L at admission (OR, 6.08; 95%CI, 1.71-21.06; p = 0.005). A Glasgow Coma Scale (GCS) score of >5 at admission was associated with lower in-hospital mortality (OR, 0.009; 95%CI, 0.02-0.37; p = 0.0009). Conclusion: In patients with hanging-induced cardiac arrest, time from collapse or unhanging to return of spontaneous circulation, glycaemia, arterial lactate, and coma depth at admission were independently associated with survival to hospital discharge. Knowledge of these risk factors may help guide treatment decisions in these patients at high risk of hospital mortality.

5.
Front Neurol ; 14: 1189278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588670

RESUMEN

The relationship between neuroinflammation and cognition remains uncertain in early Alzheimer's disease (AD). We performed a cross-sectional study to assess how neuroinflammation is related to cognition using TSPO PET imaging and a multi-domain neuropsychological assessment. A standard uptake value ratio (SUVR) analysis was performed to measure [18F]-DPA-714 binding using the cerebellar cortex or the whole brain as a (pseudo)reference region. Among 29 patients with early AD, the pattern of neuroinflammation was heterogeneous and exhibited no correlation with cognition at voxel-wise, regional or whole-brain level. The distribution of the SUVR values was independent of sex, APOE phenotype, early and late onset of symptoms and the presence of cerebral amyloid angiopathy. However, we were able to demonstrate a complex dissociation as some patients with similar PET pattern had opposed neuropsychological profiles while other patients with opposite PET profiles had similar neuropsychological presentation. Further studies are needed to explore how this heterogeneity impacts disease progression.

7.
Front Hum Neurosci ; 17: 1145253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125347

RESUMEN

Introduction: Behavioral and cerebral dissociation has been now clearly established in some patients with acquired disorders of consciousness (DoC). Altogether, these studies mainly focused on the preservation of high-level cognitive markers in prolonged DoC, but did not specifically investigate lower but key-cognitive functions to consciousness emergence, such as the ability to take a first-person perspective, notably at the acute stage of coma. We made the hypothesis that the preservation of self-recognition (i) is independent of the behavioral impairment of consciousness, and (ii) can reflect the ability to recover consciousness. Methods: Hence, using bedside Electroencephalography (EEG) recordings, we acquired, in a large cohort of 129 severely brain damaged patients, the brain response to the passive listening of the subject's own name (SON) and unfamiliar other first names (OFN). One hundred and twelve of them (mean age ± SD = 46 ± 18.3 years, sex ratio M/F: 71/41) could be analyzed for the detection of an individual and significant discriminative P3 event-related brain response to the SON as compared to OFN ('SON effect', primary endpoint assessed by temporal clustering permutation tests). Results: Patients were either coma (n = 38), unresponsive wakefulness syndrome (UWS, n = 30) or minimally conscious state (MCS, n = 44), according to the revised version of the Coma Recovery Scale (CRS-R). Overall, 33 DoC patients (29%) evoked a 'SON effect'. This electrophysiological index was similar between coma (29%), MCS (23%) and UWS (34%) patients (p = 0.61). MCS patients at the time of enrolment were more likely to emerged from MCS (EMCS) at 6 months than coma and UWS patients (p = 0.013 for comparison between groups). Among the 72 survivors' patients with event-related responses recorded within 3 months after brain injury, 75% of the 16 patients with a SON effect were EMCS at 6 months, while 59% of the 56 patients without a SON effect evolved to this favorable behavioral outcome. Discussion: About 30% of severely brain-damaged patients suffering from DoC are capable to process salient self-referential auditory stimuli, even in case of absence of behavioral detection of self-conscious processing. We suggest that self-recognition covert brain ability could be an index of consciousness recovery, and thus could help to predict good outcome.

8.
Neurology ; 100(22): e2247-e2258, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37041081

RESUMEN

BACKGROUND AND OBJECTIVES: To report the prevalence of acute encephalopathy and outcomes in patients with severe coronavirus disease 2019 (COVID-19) and to identify determinants of 90-day outcomes. METHODS: Data from adults with severe COVID-19 and acute encephalopathy were prospectively collected for patients requiring intensive care unit management in 31 university or university-affiliated intensive care units in 6 countries (France, United States, Colombia, Spain, Mexico, and Brazil) between March and September of 2020. Acute encephalopathy was defined, as recently recommended, as subsyndromal delirium or delirium or as a comatose state in case of severely decreased level of consciousness. Logistic multivariable regression was performed to identify factors associated with 90-day outcomes. A Glasgow Outcome Scale-Extended (GOS-E) score of 1-4 was considered a poor outcome (indicating death, vegetative state, or severe disability). RESULTS: Of 4,060 patients admitted with COVID-19, 374 (9.2%) experienced acute encephalopathy at or before the intensive care unit (ICU) admission. A total of 199/345 (57.7%) patients had a poor outcome at 90-day follow-up as evaluated by the GOS-E (29 patients were lost to follow-up). On multivariable analysis, age older than 70 years (odds ratio [OR] 4.01, 95% CI 2.25-7.15), presumed fatal comorbidity (OR 3.98, 95% CI 1.68-9.44), Glasgow coma scale score <9 before/at ICU admission (OR 2.20, 95% CI 1.22-3.98), vasopressor/inotrope support during ICU stay (OR 3.91, 95% CI 1.97-7.76), renal replacement therapy during ICU stay (OR 2.31, 95% CI 1.21-4.50), and CNS ischemic or hemorrhagic complications as acute encephalopathy etiology (OR 3.22, 95% CI 1.41-7.82) were independently associated with higher odds of poor 90-day outcome. Status epilepticus, posterior reversible encephalopathy syndrome, and reversible cerebral vasoconstriction syndrome were associated with lower odds of poor 90-day outcome (OR 0.15, 95% CI 0.03-0.83). DISCUSSION: In this observational study, we found a low prevalence of acute encephalopathy at ICU admission in patients with COVID-19. More than half of patients with COVID-19 presenting with acute encephalopathy had poor outcomes as evaluated by GOS-E. Determinants of poor 90-day outcome were dominated by older age, comorbidities, degree of impairment of consciousness before/at ICU admission, association with other organ failures, and acute encephalopathy etiology. TRIAL REGISTRATION INFORMATION: The study is registered with ClinicalTrials.gov, number NCT04320472.


Asunto(s)
COVID-19 , Delirio , Síndrome de Leucoencefalopatía Posterior , Adulto , Humanos , Anciano , COVID-19/complicaciones , Coma/epidemiología , Estudios Prospectivos , Unidades de Cuidados Intensivos
9.
Brain Commun ; 5(2): fcad073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013171

RESUMEN

Accumulating evidence indicates that coronavirus disease 2019 is a major cause of delirium. Given the global dimension of the current pandemic and the fact that delirium is a strong predictor of cognitive decline for critically ill patients, this raises concerns regarding the neurological cost of coronavirus disease 2019. Currently, there is a major knowledge gap related to the covert yet potentially incapacitating higher-order cognitive impairment underpinning coronavirus disease 2019 related delirium. The aim of the current study was to analyse the electrophysiological signatures of language processing in coronavirus disease 2019 patients with delirium by using a specifically designed multidimensional auditory event-related potential battery to probe hierarchical cognitive processes, including self-processing (P300) and semantic/lexical priming (N400). Clinical variables and electrophysiological data were prospectively collected in controls subjects (n = 14) and in critically ill coronavirus disease 2019 patients with (n = 19) and without (n = 22) delirium. The time from intensive care unit admission to first clinical sign of delirium was of 8 (3.5-20) days, and the delirium lasted for 7 (4.5-9.5) days. Overall, we have specifically identified in coronavirus disease 2019 patients with delirium, both a preservation of low-level central auditory processing (N100 and P200) and a coherent ensemble of covert higher-order cognitive dysfunctions encompassing self-related processing (P300) and sematic/lexical language priming (N400) (spatial-temporal clustering, P-cluster ≤ 0.05). We suggest that our results shed new light on the neuropsychological underpinnings of coronavirus disease 2019 related delirium, and may constitute a valuable method for patient's bedside diagnosis and monitoring in this clinically challenging setting.

10.
Ann Intensive Care ; 13(1): 22, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36959425

RESUMEN

BACKGROUND: The rise in antimicrobial resistance is a global threat responsible for about 33,000 deaths in 2015 with a particular concern for extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) and has led to a major increase in the use of carbapenems, last-resort antibiotics. METHODS: In this retrospective propensity-weighted multicenter observational study conducted in 11 ICUs, the purpose was to assess the efficacy of non carbapenem regimen (piperacillin-tazobactam (PTZ) + aminoglycosides or 3rd-generation cephalosporin (3GC) + aminoglycosides) as empiric therapy in comparison with carbapenem in extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-E) urinary septic shock. The primary outcome was Day-30 mortality. RESULTS: Among 156 patients included in this study, 69 received a carbapenem and 87 received non carbapenem antibiotics as empiric treatment. Baseline clinical characteristics were similar between the two groups. Patients who received carbapenem had similar Day-30 mortality (10/69 (15%) vs 6/87 (7%), OR = 1.99 [0.55; 5.34] p = 0.16), illness severity, resolution of septic shock, and ESBL-E infection recurrence rates than patients who received an empiric non carbapenem therapy. The rates of secondary infection with C. difficile were comparable. CONCLUSIONS: In ESBL-E urinary septic shock, empiric treatment with a non carbapenem regimen, including systematically aminoglycosides, was not associated with higher mortality, compared to a carbapenem regimen.

12.
J Mycol Med ; 33(1): 101325, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36270214

RESUMEN

Invasive mould infections are life-threatening and mainly occur in immunocompromised patients. Whereas aspergillosis is described during haemophagocytic lymphohistiocytosis (HLH), only a few cases of concomitant mucormycosis with HLH have been reported. Here, we present an uncommon coinfection of mucormycosis and aspergillosis associated with HLH probably due to a varicella zoster virus (VZV) viraemia which was unresponsive to triple antifungal therapy (liposomal amphotericin B combined with isavuconazole and caspofungin). A review of the cases of mucormycosis with HLH showed that this uncommon association was always lethal and underscored the relevance of screening for mould infections in patients with HLH.


Asunto(s)
Aspergilosis , Coinfección , Linfohistiocitosis Hemofagocítica , Mucormicosis , Humanos , Mucormicosis/complicaciones , Mucormicosis/diagnóstico , Mucormicosis/tratamiento farmacológico , Antifúngicos/uso terapéutico , Coinfección/complicaciones , Coinfección/diagnóstico , Coinfección/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/complicaciones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Aspergilosis/complicaciones , Aspergilosis/diagnóstico , Aspergilosis/tratamiento farmacológico , Hongos
13.
Brain Commun ; 5(6): fcad319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38757093

RESUMEN

Severe traumatic brain injury can lead to transient or even chronic disorder of consciousness. To increase diagnosis and prognosis accuracy of disorder of consciousness, functional neuroimaging is recommended 1 month post-injury. Here, we investigated brain networks remodelling on longitudinal data between 1 and 3 months post severe traumatic brain injury related to change of consciousness. Thirty-four severe traumatic brain-injured patients were included in a cross-sectional and longitudinal clinical study, and their MRI data were compared to those of 20 healthy subjects. Long duration resting-state functional MRI were acquired in minimally conscious and conscious patients at two time points after their brain injury. The first time corresponds to the exit from intensive care unit and the second one to the discharge from post-intensive care rehabilitation ward. Brain networks data were extracted using graph analysis and metrics at each node quantifying local (clustering) and global (degree) connectivity characteristics. Comparison with brain networks of healthy subjects revealed patterns of hyper- and hypo-connectivity that characterize brain networks reorganization through the hub disruption index, a value quantifying the functional disruption in each individual severe traumatic brain injury graph. At discharge from intensive care unit, 24 patients' graphs (9 minimally conscious and 15 conscious) were fully analysed and demonstrated significant network disruption. Clustering and degree nodal metrics, respectively, related to segregation and integration properties of the network, were relevant to distinguish minimally conscious and conscious groups. At discharge from post-intensive care rehabilitation unit, 15 patients' graphs (2 minimally conscious, 13 conscious) were fully analysed. The conscious group still presented a significant difference with healthy subjects. Using mixed effects models, we showed that consciousness state, rather than time, explained the hub disruption index differences between minimally conscious and conscious groups. While severe traumatic brain-injured patients recovered full consciousness, regional functional connectivity evolved towards a healthy pattern. More specifically, the restoration of a healthy brain functional segregation could be necessary for consciousness recovery after severe traumatic brain injury. For the first time, extracting the hub disruption index directly from each patient's graph, we were able to track the clinical alteration and subsequent recovery of consciousness during the first 3 months following a severe traumatic brain injury.

14.
Intensive Care Med ; 48(9): 1185-1196, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978137

RESUMEN

PURPOSE: Management and outcomes of pregnant women with coronavirus disease 2019 (COVID-19) admitted to intensive care unit (ICU) remain to be investigated. METHODS: A retrospective multicenter study conducted in 32 ICUs in France, Belgium and Switzerland. Maternal management as well as maternal and neonatal outcomes were reported. RESULTS: Among the 187 pregnant women with COVID-19 (33 ± 6 years old and 28 ± 7 weeks' gestation), 76 (41%) were obese, 12 (6%) had diabetes mellitus and 66 (35%) had pregnancy-related complications. Standard oxygenation, high-flow nasal oxygen therapy (HFNO) and non-invasive ventilation (NIV) were used as the only oxygenation technique in 41 (22%), 55 (29%) and 18 (10%) patients, respectively, and 73 (39%) were intubated. Overall, 72 (39%) patients required several oxygenation techniques and 15 (8%) required venovenous extracorporeal membrane oxygenation. Corticosteroids and tocilizumab were administered in 157 (84%) and 25 (13%) patients, respectively. Awake prone positioning or prone positioning was performed in 49 (26%) patients. In multivariate analysis, risk factors for intubation were obesity (cause-specific hazard ratio (CSH) 2.00, 95% CI (1.05-3.80), p = 0.03), term of pregnancy (CSH 1.07, 95% CI (1.02-1.10), per + 1 week gestation, p = 0.01), extent of computed tomography (CT) scan abnormalities > 50% (CSH 2.69, 95% CI (1.30-5.60), p < 0.01) and NIV use (CSH 2.06, 95% CI (1.09-3.90), p = 0.03). Delivery was required during ICU stay in 70 (37%) patients, mainly due to maternal respiratory worsening, and improved the driving pressure and oxygenation. Maternal and fetal/neonatal mortality rates were 1% and 4%, respectively. The rate of maternal and/or neonatal complications increased with the invasiveness of maternal respiratory support. CONCLUSION: In ICU, corticosteroids, tocilizumab and prone positioning were used in few pregnant women with COVID-19. Over a third of patients were intubated and delivery improved the driving pressure.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Adulto , COVID-19/complicaciones , COVID-19/terapia , Femenino , Humanos , Recién Nacido , Unidades de Cuidados Intensivos , Embarazo , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/terapia , Mujeres Embarazadas , SARS-CoV-2
15.
Biomedicines ; 10(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009500

RESUMEN

Considering virus-related and drug-induced immunocompromised status of critically ill COVID-19 patients, we hypothesize that these patients would more frequently develop ventilator-associated pneumonia (VAP) than patients with ARDS from other viral causes. We conducted a retrospective observational study in two intensive care units (ICUs) from France, between 2017 and 2020. We compared bacterial co-infection at ICU admission and throughout the disease course of two retrospective longitudinally sampled groups of critically ill patients, who were admitted to ICU for either H1N1 or SARS-CoV-2 respiratory infection and depicted moderate-to-severe ARDS criteria upon admission. Sixty patients in the H1N1 group and 65 in the COVID-19 group were included in the study. Bacterial co-infection at the endotracheal intubation time was diagnosed in 33% of H1N1 and 16% COVID-19 patients (p = 0.08). The VAP incidence per 100 days of mechanical ventilation was 3.4 (2.2−5.2) in the H1N1 group and 7.2 (5.3−9.6) in the COVID-19 group (p < 0.004). The HR to develop VAP was of 2.33 (1.34−4.04) higher in the COVID-19 group (p = 0.002). Ten percent of H1N1 patients and 30% of the COVID-19 patients had a second episode of VAP (p = 0.013). COVID-19 patients have fewer bacterial co-infections upon admission, but the incidence of secondary infections increased faster in this group compared to H1N1 patients.

16.
Neurocrit Care ; 37(Suppl 2): 303-312, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876960

RESUMEN

BACKGROUND: There is an unfulfilled need to find the best way to automatically capture, analyze, organize, and merge structural and functional brain magnetic resonance imaging (MRI) data to ultimately extract relevant signals that can assist the medical decision process at the bedside of patients in postanoxic coma. We aimed to develop and validate a deep learning model to leverage multimodal 3D MRI whole-brain times series for an early evaluation of brain damages related to anoxoischemic coma. METHODS: This proof-of-concept, prospective, cohort study was undertaken at the intensive care unit affiliated with the University Hospital (Toulouse, France), between March 2018 and May 2020. All patients were scanned in coma state at least 2 days (4 ± 2 days) after cardiac arrest. Over the same period, age-matched healthy volunteers were recruited and included. Brain MRI quantification encompassed both "functional data" from regions of interest (precuneus and posterior cingulate cortex) with whole-brain functional connectivity analysis and "structural data" (gray matter volume, T1-weighted, fractional anisotropy, and mean diffusivity). A specifically designed 3D convolutional neuronal network (CNN) was created to allow conscious state discrimination (coma vs. controls) by using raw MRI indices as the input. A voxel-wise visualization method based on the study of convolutional filters was applied to support CNN outcome. The Ethics Committee of the University Teaching Hospital of Toulouse, France (2018-A31) approved the study and informed consent was obtained from all participants. RESULTS: The final cohort consisted of 29 patients in postanoxic coma and 34 healthy volunteers. Coma patients were successfully discerned from controls by using 3D CNN in combination with different MR indices. The best accuracy was achieved by functional MRI data, in particular with resting-state functional MRI of the posterior cingulate cortex, with an accuracy of 0.96 (range 0.94-0.98) on the test set from 10-time repeated tenfold cross-validation. Even more satisfactory performances were achieved through the majority voting strategy, which was able to compensate for mistakes from single MR indices. Visualization maps allowed us to identify the most relevant regions for each MRI index, notably regions previously described as possibly being involved in consciousness emergence. Interestingly, a posteriori analysis of misclassified patients indicated that they may present some common functional MRI traits with controls, which suggests further favorable outcomes. CONCLUSIONS: A fully automated identification of clinically relevant signals from complex multimodal neuroimaging data is a major research topic that may bring a radical paradigm shift in the neuroprognostication of patients with severe brain injury. We report for the first time a successful discrimination between patients in postanoxic coma patients from people serving as controls by using 3D CNN whole-brain structural and functional MRI data. Clinical Trial Number http://ClinicalTrials.gov (No. NCT03482115).


Asunto(s)
Coma , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Cohortes , Coma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Estudios Prospectivos
17.
Crit Care Explor ; 4(6): e0719, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35765373

RESUMEN

There is only low-certainty evidence on the use of predictive models to assist COVID-19 patient's ICU admission decision-making process. Accumulative evidence suggests that lung ultrasound (LUS) assessment of COVID-19 patients allows accurate bedside evaluation of lung integrity, with the added advantage of repeatability, absence of radiation exposure, reduced risk of virus dissemination, and low cost. Our goal is to assess the performance of a quantified indicator resulting from LUS data compared with standard clinical practice model to predict critical respiratory illness in the 24 hours following hospital admission. DESIGN: Prospective cohort study. SETTING: Critical Care Unit from University Hospital Purpan (Toulouse, France) between July 2020 and March 2021. PATIENTS: Adult patients for COVID-19 who were in acute respiratory failure (ARF), defined as blood oxygen saturation as measured by pulse oximetry less than 90% while breathing room air or respiratory rate greater than or equal to 30 breaths/min at hospital admission. Linear multivariate models were used to identify factors associated with critical respiratory illness, defined as death or mild/severe acute respiratory distress syndrome (Pao2/Fio2 < 200) in the 24 hours after patient's hospital admission. INTERVENTION: LUS assessment. MEASUREMENTS AND MAIN RESULTS: One hundred and forty COVID-19 patients with ARF were studied. This cohort was split into two independent groups: learning sample (first 70 patients) and validation sample (last 70 patients). Interstitial lung water, thickening of the pleural line, and alveolar consolidation detection were strongly associated with patient's outcome. The LUS model predicted more accurately patient's outcomes than the standard clinical practice model (DeLong test: Testing: z score = 2.50, p value = 0.01; Validation: z score = 2.11, p value = 0.03). CONCLUSIONS: LUS assessment of COVID-19 patients with ARF at hospital admission allows a more accurate prediction of the risk of critical respiratory illness than standard clinical practice. These results hold the promise of improving ICU resource allocation process, particularly in the case of massive influx of patients or limited resources, both now and in future anticipated pandemics.

18.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594856

RESUMEN

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Células Epiteliales , Inflamasomas , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Caspasa 3/metabolismo , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Pulmón/metabolismo , Pulmón/virología , Proteínas NLR/genética , Proteínas NLR/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad
19.
Simul Healthc ; 17(1): 42-48, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104829

RESUMEN

INTRODUCTION: Avoiding coronavirus disease 2019 (COVID-19) work-related infection in frontline healthcare workers is a major challenge. A massive training program was launched in our university hospital for anesthesia/intensive care unit and operating room staff, aiming at upskilling 2249 healthcare workers for COVID-19 patients' management. We hypothesized that such a massive training was feasible in a 2-week time frame and efficient in avoiding sick leaves. METHODS: We performed a retrospective observational study. Training focused on personal protective equipment donning/doffing and airway management in a COVID-19 simulated patient. The educational models used were in situ procedural and immersive simulation, peer-teaching, and rapid cycle deliberate practice. Self-learning organization principles were used for trainers' management. Ordinary disease quantity in full-time equivalent in March and April 2020 were compared with the same period in 2017, 2018, and 2019. RESULTS: A total of 1668 healthcare workers were trained (74.2% of the target population) in 99 training sessions over 11 days. The median number of learners per session was 16 (interquartile range = 9-25). In the first 5 days, the median number of people trained per weekday was 311 (interquartile range = 124-385). Sick leaves did not increase in March to April 2020 compared with the same period in the 3 preceding years. CONCLUSIONS: Massive training for COVID-19 patient management in frontline healthcare workers is feasible in a very short time and efficient in limiting the rate of sick leave. This experience could be used in the anticipation of new COVID-19 waves or for rapidly preparing hospital staff for an unexpected major health crisis.


Asunto(s)
COVID-19 , Humanos , Pandemias , Personal de Hospital , SARS-CoV-2 , Ausencia por Enfermedad
20.
J Clin Monit Comput ; 36(5): 1479-1487, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34865181

RESUMEN

The accuracy of pulse pressure variation (PPV) to predict fluid responsiveness using pressure-controlled (PC) instead of volume-controlled modes is under debate. To specifically address this issue, we designed a study to evaluate the accuracy of PPV to predict fluid responsiveness in severe septic patients who were mechanically ventilated with biphasic positive airway pressure (BIPAP) PC-ventilation mode. 45 patients with sepsis or septic shock and who were mechanically ventilated with BIPAP mode and a target tidal volume of 7-8 ml/kg were included. PPV was automatically assessed at baseline and after a standard fluid challenge (Ringer's lactate 500 ml). A 15% increase in stroke volume (SV) defined fluid responsiveness. The predictive value of PPV was evaluated through a receiver operating characteristic (ROC) curve analysis and "gray zone" statistical approach. 20 (44%) patients were considered fluid responders. We identified a significant relationship between PPV decrease after volume expansion and SV increase (spearman ρ = - 0.5, p < 0.001). The area under ROC curve for PPV was 0.71 (95%CI 0.56-0.87, p = 0.007). The best cut-off (based on Youden's index) was 8%, with a sensitivity of 80% and specificity of 60%. Using a gray zone approach, we identified that PPV values comprised between 5 and 15% do not allow a reliable fluid responsiveness prediction. In critically ill septic patients ventilated under BIPAP mode, PPV appears to be an accurate method for fluid responsiveness prediction. However, PPV values comprised between 5 and 15% constitute a gray zone that does not allow a reliable fluid responsiveness prediction.


Asunto(s)
Respiración Artificial , Sepsis , Presión Sanguínea , Presión de las Vías Aéreas Positiva Contínua , Fluidoterapia/métodos , Hemodinámica , Humanos , Curva ROC , Respiración Artificial/métodos , Lactato de Ringer , Sepsis/terapia , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...