Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(33): 6833-6840, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39115293

RESUMEN

The 10-23 DNAzyme, a catalytic DNA molecule with RNA-cleaving activity, has garnered significant interest for its potential therapeutic applications as a gene-silencing agent. However, the lack of a detailed understanding about its mechanism has hampered progress. A recent structural analysis has revealed a highly organized conformation thanks to the stabilization of specific interactions within the catalytic core of the 10-23 DNAzyme, which facilitate the cleavage of RNA. In this configuration, it has been shown that G14 is in good proximity to the cleavage site which suggests its role as a general base, by activating the 2'-OH nucleophile, in the catalysis of the 10-23 DNAzyme. Also, the possibility of a hydrated metal acting as a general acid has been proposed. In this study, through activity assays, we offer evidence of the involvement of general acid-base catalysis in the mechanism of the 10-23 DNAzyme by analyzing its pH-rate profiles and the role of G14, and metal cofactors like Mg2+ and Pb2+. By substituting G14 with its analogue 2-aminopurine and examining the resultant pH-rate profiles, we propose the participation of G14 in a catalytically relevant proton transfer event, acting as a general base. Further analysis, using Pb2+ as a cofactor, suggests the capability of the hydrated metal ion to act as a general acid. These functional results provide critical insights into the catalytic strategies of RNA-cleaving DNAzymes, revealing common mechanisms among nucleic acid enzymes that cleave RNA.


Asunto(s)
ADN Catalítico , ADN Catalítico/química , ADN Catalítico/metabolismo , Concentración de Iones de Hidrógeno , Biocatálisis , Cinética , Magnesio/química , Magnesio/metabolismo , Catálisis , Plomo/química , Plomo/metabolismo , ADN de Cadena Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA