Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(6): ar85, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656798

RESUMEN

In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.


Asunto(s)
Actinas , Feromonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Feromonas/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Polaridad Celular/fisiología , Proteínas del Citoesqueleto/metabolismo
2.
Life Sci Alliance ; 5(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985794

RESUMEN

Yeast use the G-protein-coupled receptor signaling pathway to detect and track the mating pheromone. The G-protein-coupled receptor pathway is inhibited by the regulator of G-protein signaling (RGS) Sst2 which induces Gα GTPase activity and inactivation of downstream signaling. G-protein signaling activates the MAPK Fus3, which phosphorylates the RGS; however, the role of this modification is unknown. We found that pheromone-induced RGS phosphorylation peaks early; the phospho-state of RGS controls its localization and influences MAPK spatial distribution. Surprisingly, phosphorylation of the RGS promotes completion of cytokinesis before pheromone-induced growth. Completion of cytokinesis in the presence of pheromone is promoted by the kelch-repeat protein, Kel1 and antagonized by the formin Bni1. We found that RGS complexes with Kel1 and prefers the unphosphorylatable RGS mutant. We also found overexpression of unphosphorylatable RGS exacerbates cytokinetic defects, whereas they are rescued by overexpression of Kel1. These data lead us to a model where Kel1 promotes completion of cytokinesis before pheromone-induced polarity but is inhibited by unphosphorylated RGS binding.


Asunto(s)
Citocinesis , Proteínas Quinasas Activadas por Mitógenos , Proteínas RGS , Proteínas de Saccharomyces cerevisiae , Citocinesis/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa , Proteínas de Microfilamentos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Feromonas/metabolismo , Fosforilación , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Science ; 374(6570): 1005-1009, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34793213

RESUMEN

Metal-binding natural products contribute to metal acquisition and bacterial virulence, but their roles in metal stress response are underexplored. We show that a five-enzyme pathway in Pseudomonas aeruginosa synthesizes a small-molecule copper complex, fluopsin C, in response to elevated copper concentrations. Fluopsin C is a broad-spectrum antibiotic that contains a copper ion chelated by two minimal thiohydroxamates. Biosynthesis of the thiohydroxamate begins with cysteine and requires two lyases, two iron-dependent enzymes, and a methyltransferase. The iron-dependent enzymes remove the carboxyl group and the α carbon from cysteine through decarboxylation, N-hydroxylation, and methylene excision. Conservation of the pathway in P. aeruginosa and other bacteria suggests a common role for fluopsin C in the copper stress response, which involves fusing copper into an antibiotic against other microbes.


Asunto(s)
Antibacterianos/biosíntesis , Cobre/análisis , Pseudomonas aeruginosa/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Vías Biosintéticas , Cobre/metabolismo , Cobre/farmacología , Farmacorresistencia Bacteriana , Espectroscopía de Resonancia por Spin del Electrón , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Operón , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
4.
Anal Methods ; 12(1): 18-24, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32190125

RESUMEN

Oxygen is a transcriptional regulator responsible for tissue homeostasis and maintenance. Studies relating cellular phenotype with oxygen tension often use hypoxia chambers, which expose cells to a single, static oxygen tension. Despite their ease of use, these chambers are unable to replicate the oxygen gradients found in healthy and diseased tissues. Microfabricated devices capable of imposing an oxygen gradient across tissue-like structures are a promising tool for these studies, as they can provide a high density of information in a single experimental setup. We describe the fabrication and characterization of a modular device, which leverages the gas-permeability of silicone to impose gradients of oxygen across cell-containing regions, assembled by layering sheets of laser cut acrylic and silicone rubber. The silicone also acts as a barrier, separating the flowing gases from the cell culture medium, preventing evaporation or bubble formation in experiments that require prolonged periods of incubation. The acrylic components provide a rigid framework to provide a sterile culture environment. Using oxygen-sensing films, we show the device can support gradients of different ranges and steepness by simply changing the composition of the gases flowing through the silicone components of the BLOCC. Using a cell-based reporter assay, we demonstrate that cellular responses to hypoxia are proportional to oxygen tension.


Asunto(s)
Técnicas de Cultivo de Célula , Oxígeno , Humanos , Hipoxia , Siliconas
5.
Aging Cell ; 18(1): e12851, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565836

RESUMEN

The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin-associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran-dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ-H2AX in response to ionizing radiation. Our data suggest a lamina-chromatin-Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Lámina Nuclear/metabolismo , Transducción de Señal , Proteína de Unión al GTP ran/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Azepinas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Histonas/metabolismo , Humanos , Interfase/efectos de los fármacos , Lamina Tipo A/metabolismo , Lisina/metabolismo , Metilación/efectos de los fármacos , Lámina Nuclear/efectos de los fármacos , Progeria/patología , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos
6.
PLoS One ; 13(12): e0209195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30557374

RESUMEN

Ribonucleoprotein (RNP) granules are higher order assemblies of RNA, RNA-binding proteins, and other proteins, that regulate the transcriptome and protect RNAs from environmental challenge. There is a diverse range of RNP granules, many cytoplasmic, which provide various levels of regulation of RNA metabolism. Here we present evidence that the yeast transcription termination factor, Nab3, is targeted to intranuclear granules in response to glucose starvation by Nab3's proline/glutamine-rich, prion-like domain (PrLD) which can assemble into amyloid in vitro. Localization to the granule is reversible and sensitive to the chemical probe 1,6 hexanediol suggesting condensation is driven by phase separation. Nab3's RNA recognition motif is also required for localization as seen for other PrLD-containing RNA-binding proteins that phase separate. Although the PrLD is necessary, it is not sufficient to localize to the granule. A heterologous PrLD that functionally replaces Nab3's essential PrLD, directed localization to the nuclear granule, however a chimeric Nab3 molecule with a heterologous PrLD that cannot restore termination function or viability, does not form granules. The Nab3 nuclear granule shows properties similar to well characterized cytoplasmic compartments formed by phase separation, suggesting that, as seen for other elements of the transcription machinery, termination factor condensation is functionally important.


Asunto(s)
Glucosa/deficiencia , Espacio Intranuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Nucleares/genética , Priones/metabolismo , Dominios Proteicos , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...