Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 203: 113350, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35973612

RESUMEN

Defense-related metabolome traits in pine species after infestation by Sirex noctilio are largely unknown, despite, in most cases, trees being overwhelmed. Using LC-MS-based untargeted metabolomics, we revealed the systemic metabolic changes induced by this insect in 14-year-old Pinus radiata trees, the most affected species worldwide. An immediate metabolome alteration was expressed in needles after infestation, including the up-regulation of flavonols, flavan-3-ols, oxyneolignans, auxins, proline, and tryptophan, among others. The flavan-3-ols (catechin and procyanidin B1) suggested a rapidly induced photoprotection mechanism aided by diverting proline as an alternative substrate for respiration to compensate for the progressive chlorosis that degrades photosystems. Meanwhile, glutathione, glutamate, and ascorbate levels significantly dropped in needles, which may indicate the critical oxidative stress that trees had to face since the onset of the infestation. They were not fully replenished after long-term infestation, and redox homeostasis was probably not achieved, compromising tree survival. Nevertheless, a huge auxins overexpression detected in needles throughout the infestation may reflect tolerance against the premature senescence caused by the woodwasp venom. In contrast, the metabolome of wood tissues remained initially unchanged, although it seems to collapse after three months. Overall, the metabolomics strategy adopted in this work evidenced its usefulness in uncovering the fundamental roles of plants' chemical defense that govern interactions with specific stressors.


Asunto(s)
Catequina , Himenópteros , Pinus , Animales , Flavonoles , Glutamatos , Glutatión , Himenópteros/fisiología , Ácidos Indolacéticos , Prolina , Árboles , Triptófano
2.
J Nat Prod ; 82(6): 1496-1502, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31244146

RESUMEN

A bioassay-guided phytochemical study of a Mimosa caesalpiniifolia leaf extract with antifungal activity permitted the identification of 28 compounds, including the new 6-(ß-boivinopyranosyl)apigenin (1), 8-(ß-oliopyranosyl)apigenin (2), (E)-6-(2-carboxyethenyl)apigenin (3), (E)-8-(2-carboxyethenyl)apigenin (4), and 7,5″-anhydro-6-(α-2,6-dideoxy-5-hydroxyarabinohexopyranosyl)apigenin (5). The structures of the new compounds were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, and by mass spectrometry. Compound 3 showed promising activity and selectivity against Candida krusei (IC50 44 nM), which exhibits resistance to azoles. The association of the major components 3-ß-d-glucopyranosyloxysitosterol (8) and ethyl gallate (10) was synergistic against C. krusei, especially the IC values of compound 10, which were reduced by more than 100-fold.

3.
J Nat Prod ; 79(11): 2903-2911, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27797203

RESUMEN

Four new steroidal saponins (1-4) along with 13 known saponins were isolated from the leaves of Furcraea hexapetala. The new compounds were identified as (20R,22R,25R)-3ß-hydroxy-5α-spirostan-12-one 3-O-{α-l-rhamnopyranosyl-(1→4)-O-ß-d-glucopyranosyl-(1→3)-O-[ß-d-glucopyranosyl-(1→3)-O-ß-d-glucopyranosyl-(1→2)]-O-ß-d-glucopyranosyl-(1→4)-O-ß-d-galactopyranoside} (1), (25R)-3ß-hydroxy-5α-spirost-20(21)-en-12-one 3-O-{α-l-rhamnopyranosyl-(1→4)-O-ß-d-glucopyranosyl-(1→3)-O-[ß-d-glucopyranosyl-(1→3)-O-ß-d-glucopyranosyl-(1→2)]-O-ß-d-glucopyranosyl-(1→4)-O-ß-d-galactopyranoside} (2), (25R)-5α-spirostan-3ß-ol 3-O-{ß-d-glucopyranosyl-(1→2)-O-ß-d-glucopyranosyl-(1→2)-O-ß-d-glucopyranosyl-(1→4)-O-ß-d-galactopyranoside} (3), and (25R)-5ß-spirostan-3ß-ol 3-O-{ß-d-glucopyranosyl-(1→6)-O-ß-d-galactopyranoside} (4) by spectroscopic analysis, including one- and two-dimensional NMR techniques, mass spectrometry, and chemical methods. The phytotoxicity of the isolated compounds against the standard target species Lactuca sativa was evaluated. Structure-activity relationships for these compounds with respect to phytotoxic effects are discussed.


Asunto(s)
Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Asparagaceae/química , Fitosteroles/aislamiento & purificación , Fitosteroles/farmacología , Hojas de la Planta/química , Saponinas/aislamiento & purificación , Saponinas/farmacología , Alcaloides/química , Cuba , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fitosteroles/química , Saponinas/química , Estereoisomerismo , Relación Estructura-Actividad
4.
J Nat Prod ; 78(1): 77-84, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25517504

RESUMEN

A phytochemical study of a Serjania marginata leaf extract with antiulcer activity afforded 15 compounds, including the new 3-O-α-l-arabinopyranosyl(1→3)-α-l-rhamnopyranosyl(1→2)[ß-d-glucopyranosyl(1→4)]-α-l-arabinopyranosyloleanolic acid (1) and 7,5″-anhydroapigenin 8-C-α-(2,6-dideoxy-5-hydroxy-ribo-hexopyranosyl)-4'-O-ß-d-glucopyranoside (4). The structures of the new compounds were determined by spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry, and chemical methods. Compound 4 is a C-hexopyranosylapigenin with an unusual cyclic ether linkage between C-5″ and C-7 of apigenin. The isolated proanthocyanidins have high antioxidant activities, and these compounds are probably responsible for the gastroprotective effect of the extract.


Asunto(s)
Antiulcerosos/química , Apigenina/química , Glicósidos/aislamiento & purificación , Ácido Oleanólico/aislamiento & purificación , Sapindaceae/química , Antiulcerosos/aislamiento & purificación , Antiulcerosos/farmacología , Apigenina/aislamiento & purificación , Apigenina/farmacología , Brasil , Glicósidos/química , Glicósidos/farmacología , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Hojas de la Planta/química , Saponinas/química , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA