Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
World J Diabetes ; 15(7): 1603-1614, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39099809

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a metabolic disease of impaired glucose utilization and a major cause of cardiovascular disease (CVD). The pathogenesis of both diseases shares common risk factors and mechanisms, and both are significant contributors to global morbidity and mortality. Supplements of natural products for T2D mellitus (T2DM) and CVD can be seen as a potential preventive and effective therapeutic strategy. AIM: To critically evaluate the therapeutic potential of natural products in T2D and coronary artery disease (CAD). METHODS: By using specific keywords, we strategically searched the PubMed database. Randomized controlled trials (RCTs) were searched as the primary focus that examined the effect of natural products on glycemic control, oxidative stress, and antioxidant levels. We focused on outcomes such as low blood glucose levels, adjustment on markers of oxidative stress and antioxidants. After screening full-length papers, we included 9 RCTs in our review that met our inclusion criteria. RESULTS: In the literature search on the database, we found that various natural products like plant secondary metabolites play a diverse role in the management of CAD. American ginseng, sesame oil and cocoa flavanols proved effective in lowering blood glucose levels and controlling blood pressure, which are key factors in managing T2DM and CVD. In diabetic patients Melissa officinalis effectively reduce inflammation and shows diabetes prevention. Both fish oil and flaxseed oil reduced insulin levels and inflammatory markers, suggesting benefits for both conditions. The lipid profile and endothelial function were enhanced by Nigella sativa oil and Terminalia chebula, which is significant for the management of cardiovascular risk factors in T2DM. Additionally Bilberry extract also showed promise for improving glycemic control in patients with T2DM. CONCLUSION: The high level of antioxidant, anti-inflammatory, and anti-angiogenic properties found in natural products makes them promising therapeutic options for the management of CAD, with the potential benefit of lowering the risk of CAD.

2.
Protein J ; 43(4): 718-725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068630

RESUMEN

Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.


Asunto(s)
Lectinas Tipo C , Aprendizaje Automático , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Humanos , Dominios Proteicos
3.
RSC Med Chem ; 15(7): 2254-2269, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39026640

RESUMEN

Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein-ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.

4.
World J Clin Cases ; 12(3): 525-537, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38322458

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disease of impaired glucose utilization. Uncontrolled high sugar levels lead to advanced glycation end products (AGEs), which affects several metabolic pathways by its receptor of advanced glycation end products (RAGE) and causes diabetic complication. MiRNAs are small RNA molecules which regulate genes linked to diabetes and affect AGEs pathogenesis, and target tissues, influencing health and disease processes. AIM: To explore miRNA roles in T2DM's metabolic pathways for potential therapeutic and diagnostic advancements in diabetes complications. METHODS: We systematically searched the electronic database PubMed using keywords. We included free, full-length research articles that evaluate the role of miRNAs in T2DM and its complications, focusing on genetic and molecular disease mechanisms. After assessing the full-length papers of the shortlisted articles, we included 12 research articles. RESULTS: Several types of miRNAs are linked in metabolic pathways which are affected by AGE/RAGE axis in T2DM and its complications. miR-96-5p, miR-7-5p, miR-132, has_circ_0071106, miR-143, miR-21, miR-145-5p, and more are associated with various aspects of T2DM, including disease risk, diagnostic markers, complications, and gene regulation. CONCLUSION: Targeting the AGE/RAGE axis, with a focus on miRNA regulation, holds promise for managing T2DM and its complications. MiRNAs have therapeutic potential as they can influence the metabolic pathways affected by AGEs and RAGE, potentially reducing inflammation, oxidative stress, and vascular complications. Additionally, miRNAs may serve as early diagnostic biomarkers for T2DM. Further research in this area may lead to innovative therapeutic strategies for diabetes and its associated complications.

5.
Nutrients ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068727

RESUMEN

BACKGROUND: Severe acute malnutrition (SAM) is a significant public health problem in developing countries, including India, where a significant proportion of children suffer from malnutrition. OBJECTIVE: This research aims to investigate the factors contributing to severe acute malnutrition (SAM). Additionally, the study seeks to explore the relationship between micronutrient levels and pro-inflammatory cytokines in SAM children with and without clinical complications. Furthermore, the effectiveness of antibiotic treatment in SAM children without complications is evaluated. METHODS: The study involved three groups comprising 66 subjects each: a healthy control group, SAM children with complications, and SAM children without complications. Blood samples were collected, and various analyses were conducted, including biochemical, hematological, micronutrient, and pro-inflammatory marker quantification. The data were analyzed using SPSS version 22.0. RESULTS: The results indicate that the levels of IL-6, CRP, and TNF-α were significantly higher in the SAM group with complications compared to both the control group and the SAM group without complications. Zinc and copper levels were significantly lower in both SAM groups compared to the control group, and a negative correlation was observed between zinc levels and inflammatory markers. The study also assessed the efficacy of antibiotic treatment in SAM children without complications by comparing their weight, height, weight-for-height, and weight-for-age at baseline and after a 15-day follow-up period. Significant improvements in these parameters were observed in both the group receiving antibiotic treatment and the group not receiving antibiotic treatment. CONCLUSION: The findings suggest that a combination of antibiotic treatment and nutritional support can lead to significant clinical improvements in SAM children without complications. This study has important implications for the management and treatment of SAM in India and other developing countries.


Asunto(s)
Micronutrientes , Desnutrición Aguda Severa , Niño , Humanos , Lactante , Citocinas , Centros de Atención Terciaria , Desnutrición Aguda Severa/terapia , Antibacterianos/uso terapéutico , Zinc
6.
Cells ; 12(12)2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37371099

RESUMEN

Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/uso terapéutico , ARN Circular/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/tratamiento farmacológico , Relevancia Clínica , ARN no Traducido
7.
Cells ; 12(4)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831341

RESUMEN

Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , ARN Largo no Codificante/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Apoptosis
8.
Curr Issues Mol Biol ; 45(1): 400-433, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36661514

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Even with the tremendous progress made, creating effective drugs remains difficult. To develop COVID-19 treatment alternatives, clinical studies are examining a variety of therapy categories, including antibodies, antivirals, cell-based therapy, repurposed diagnostic medicines, and more. In this article, we discuss recent clinical updates on SARS-CoV-2 infection, clinical characteristics, diagnosis, immunopathology, the new emergence of variant, SARS-CoV-2, various approaches to drug development and treatment options. The development of therapies has been complicated by the global occurrence of many SARS-CoV-2 mutations. Discussion of this manuscript will provide new insight into drug pathophysiology and drug development.

9.
Probiotics Antimicrob Proteins ; 15(6): 1501-1512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36316578

RESUMEN

Allium sativum agglutinin (ASA) is an important lectin isolated from garlic bulbs and has shown promising therapeutic potential in earlier reports. It has a bulb-type lectin domain, and members of this protein family have been investigated for anti-cancer, antimicrobial and other effects. In our earlier study, we have reported ASA as an anti-cancer agent, and in the present study, we have evaluated it for its antifungal and antimicrobial effects. The effects of ASA on the opportunistic pathogens in humans Candida auris and Candida glabrata fungal strains have been evaluated, and efforts are made to evaluate the mechanistic basis of these antifungal effects. The antifungal activity of ASA on different strains of C. glabrata and C. auris was found with MIC50 concentration range of 30-70 µg/ml. Fungal growth was significantly suppressed upon treatment with ASA at MIC50 and 2MIC50. Hydrogen peroxide production was detected after ASA treatment in fungal cells and cell morphology, and integrity was affected when analysed through FE-SEM. Further, the anti-biofilm effect of ASA was investigated against Candida and three bacterial strains (Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae), and promising results were obtained with maximal effect in case of K. pneumoniae among the bacterial strains. These results can form the basis for the development of ASA as antimicrobial agent.


Asunto(s)
Antiinfecciosos , Ajo , Humanos , Antifúngicos/farmacología , Lectinas , Antiinfecciosos/farmacología , Candida , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana
10.
World J Diabetes ; 14(12): 1754-1765, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38222780

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a major cause of death worldwide, and India contributes to about one-fifth of total CAD deaths. The development of CAD has been linked to the accumulation of Nε-carboxymethyl-lysine (CML) in heart muscle, which correlates with fibrosis. AIM: To assess the impact of CML and inflammatory markers on the biochemical and cardiovascular characteristics of CAD patients with and without diabetes. METHODS: We enrolled 200 consecutive CAD patients who were undergoing coronary angiography and categorized them into two groups based on their serum glycosylated hemoglobin (HbA1c) levels (group I: HbA1c ≥ 6.5; group II: HbA1c < 6.5). We analyzed the levels of lipoproteins, plasma HbA1c levels, CML, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and nitric oxide. RESULTS: Group I (81 males and 19 females) patients had a mean age of 54.2 ± 10.2 years, with a mean diabetes duration of 4.9 ± 2.2 years. Group II (89 males and 11 females) patients had a mean age of 53.2 ± 10.3 years. Group I had more severe CAD, with a higher percentage of patients with single vessel disease and greater stenosis severity in the left anterior descending coronary artery compared to group II. Group I also exhibited a larger left atrium diameter. Group I patients exhibited significantly higher levels of CML, TNF-α, and IL-6 and lower levels of nitric oxide as compared with group II patients. Additionally, CML showed a significant positive correlation with IL-6 (r = 0.596, P = 0.001) and TNF-α (r = 0.337, P = 0.001) and a negative correlation with nitric oxide (r=-4.16, P = 0.001). Odds ratio analysis revealed that patients with CML in the third quartile (264.43-364.31 ng/mL) were significantly associated with diabetic CAD at unadjusted and adjusted levels with covariates. CONCLUSION: CML and inflammatory markers may play a significant role in the development of CAD, particularly in diabetic individuals, and may serve as potential biomarkers for the prediction of CAD in both diabetic and non-diabetic patients.

11.
Front Pharmacol ; 13: 1089066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578543

RESUMEN

Breast cancer (BC) is caused by epigenetic modifications and genetic heterogeneity and exhibits various histological feature. HER2+ (Human epidermal growth factor receptor 2) is a more aggressive type of breast cancer, diagnosis and prognosis are difficult for HER2+ BC. Anti-HER2+ inhibitors have been effectively used for patient treatment. High mortality rate is reported in HER2+ BC, due to availability of limited therapeutic options. Despite advances in systemic medications to treat metastatic breast cancer (MBC), HER2-positive MBC is still challenging for patients and treating clinicians. The clinical characteristics of the disease have changed after treatment with HER2-targeted therapy. Various types of Tyrosine kinase inhibitors (TKIs) have been developed to treat patients with HER2+ BC including afatinib, lapatinib, neratinib, tucatinib, and pyrotinib, have been developed as HER2-targeted therapies. The antibody-drug conjugates adotrastuzumab, emtansine, famtrastuzumab, and deruxtecan, as well as the anti-HER2 monoclonal antibody pertuzumab are used in both early-stage and metastatic situations, either alone or in conjunction with chemotherapy and other HER2-targeting therapies. The emergence of drug resistance in anti-HER2 therapies has been observed. To overcome drug resistance and limited efficacy in current treatment options, nano formulations can be used in patients with HER2+ BC treatment. Anti-HER2 ligands can be used in various nano formulations to target HER2 receptors. Here we will discuss, targeted TKIs in patients with HER2+ BC, clinical studies of HER2+ targeted TKIs, mechanisms of resistance to HER2-directed therapies with new implications of TKIs in HER2+ MBC (metastatic breast cancer) and anti-HER2 ligand in various nano formulations to target HER2 receptors.

12.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497027

RESUMEN

Dementia is reported to be common in those with type 2 diabetes mellitus. Type 2 diabetes contributes to common molecular mechanisms and an underlying pathology with dementia. Brain cells becoming resistant to insulin leads to elevated blood glucose levels, impaired synaptic plasticity, microglial overactivation, mitochondrial dysfunction, neuronal apoptosis, nutrient deprivation, TAU (Tubulin-Associated Unit) phosphorylation, and cholinergic dysfunction. If insulin has neuroprotective properties, insulin resistance may interfere with those properties. Risk factors have a significant impact on the development of diseases, such as diabetes, obesity, stroke, and other conditions. Analysis of risk factors of importance for the association between diabetes and dementia is important because they may impede clinical management and early diagnosis. We discuss the pathological and physiological mechanisms behind the association between Type 2 diabetes mellitus and dementia, such as insulin resistance, insulin signaling, and sporadic forms of dementia; the relationship between insulin receptor activation and TAU phosphorylation; dementia and mRNA expression and downregulation of related receptors; neural modulation due to insulin secretion and glucose homeostasis; and neuronal apoptosis due to insulin resistance and Type 2 diabetes mellitus. Addressing these factors will offer clinical outcome-based insights into the mechanisms and connection between patients with type 2 diabetes and cognitive impairment. Furthermore, we will explore the role of brain insulin resistance and evidence for anti-diabetic drugs in the prevention of dementia risk in type 2 diabetes.


Asunto(s)
Demencia , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Demencia/complicaciones , Demencia/tratamiento farmacológico
13.
Front Cell Infect Microbiol ; 12: 885482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719332

RESUMEN

[This corrects the article DOI: 10.3389/fcimb.2021.777212.].

14.
J Diabetes Metab Disord ; 21(1): 511-516, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35673506

RESUMEN

Objective: Type 2 Diabetes is a glucose metabolic disorder occurred by insulin insensitivity in which folate metabolism plays an important role. it is believed that polymorphism of Methylenetetrahydrofolate reductase (MTHFR) C677T linked with type 2 diabetes mellitus. However, results are conflicted. therefore, in this study we re-examine the relationship between MTHFR C677T in type 2 diabetes mellitus patients. Methods: Present research work included 100 newly diagnosed type 2 diabetic mellitus (T2DM) cases and 100 healthy individuals. After the blood sample collection all the biochemical parameters were evaluated among the T2DM cases and healthy individuals. DNA and RNA extraction from whole blood was done to study the MTHFR gene polymorphism by allele specific polymerase chain reaction method and its expression analysis was done by quantitative real time polymerase chain reaction method. Results: The significant difference was observed in genotype distribution among case and control group (p=0.0002). Compared with wildtype CC genotype, CT heterozygous (OR=2.95, 95% Cl=1.62-5.38) and TT homozygous (OR=3.20, CI=1.79-5.73) suggest to have effect of MTHFR polymorphism on type 2 mellitus risk. Moreover, relative MTHFR mRNA expression was found for wild type CC genotype 3.02-fold, CT heterozygous genotype 2.57 fold and mutant TT homozygous genotype 0.50-fold which is down regulated (p<0.0001). Conclusion: Our results indicates that the polymorphism in MTHFR C677T plays significant role in type II diabetes risk. MTHFR CT heterozygous and mutant TT genotype showed reduced mRNA expression among the T2DM patients. However, large scale case-control studies are needed to strengthen such conclusion in the future.

15.
Protein Pept Lett ; 29(6): 555-566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35538837

RESUMEN

BACKGROUND: Garlic (Allium sativum) from the family Amaryllidaceae is widely used in culinary and is reported to have potential anticancer, anti-diabetic, antimicrobial, and cardioprotective activities. Allium sativum agglutinin (ASA) is a bulb-type lectin (BTL) domaincontaining lectin isolated from garlic and has been studied for its various biological functions. Previous studies have reported the anti-cancer effects of ASA on histiocytic lymphoma (U937), promyelocytic leukemia (HL60), and oral cancer (KB). METHODS: In this study, we have purified and characterized ASA and evaluated it for its anticancer effects on other cancer cell lines. MTT assay and FACS analysis was done to corroborate the anticancer findings against cervical (HeLa) and lung cancer (A549) cell lines. RESULTS: IC50 value of 37 µg/ml in HeLa and a weak activity (26.4 ± 1.9% cellular inhibition at 100µg/ml treatment) in A549 were found in the MTT assay. FACS analysis further corroborated these findings and showed the apoptotic effects of ASA in these cell lines. CONCLUSION: Anticancer activity for members of bulb-type lectin (BTL) domain-containing lectins has been widely reported, and we hope that our study forms a basis for the development of ASA as a therapeutic agent.


Asunto(s)
Productos Biológicos , Ajo , Aglutininas/farmacología , Antioxidantes , Ajo/metabolismo , Lectinas , Lectinas de Plantas/metabolismo , Lectinas de Plantas/farmacología
16.
Artículo en Inglés | MEDLINE | ID: mdl-35388304

RESUMEN

The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.

17.
Front Cell Infect Microbiol ; 12: 839170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237535

RESUMEN

Multiple variants of SARS-CoV-2 have emerged and are now prevalent at the global level. Currently designated variants of concern (VOCs) are B.1.1.7, B1.351, P.1, B.1.617.2 variants and B.1.1.529. Possible options for VOC are urgently required as they carry mutations in the virus spike protein that allow them to spread more easily and cause more serious illness. The primary targets for most therapeutic methods against SARS-CoV-2 are the S (Spike) protein and RBD (Receptor-Binding Domain), which alter the binding to ACE2 (Angiotensin-Converting Enzyme 2). The most popular of these strategies involves the use of drug development targeting the RBD and the NTD (N-terminal domain) of the spike protein and multiple epitopes of the S protein. Various types of mutations have been observed in the RBDs of B.1.1.7, B1.351, P. and B.1.620. The incidence of RBD mutations increases the binding affinity to the ACE2 receptor. The high binding affinity of RBD and ACE2 has provided a structural basis for future evaluation of antibodies and drug development. Here we discuss the variants of SARS-CoV-2 and recent updates on the clinical evaluation of antibody-based treatment options. Presently, most of the antibody-based treatments have been effective in patients with SARS-CoV-2. However, there are still significant challenges in verifying independence, and the need for further clinical evaluation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Mutación , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resultado del Tratamiento
19.
Front Cell Infect Microbiol ; 11: 777212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970509

RESUMEN

The emergence of SARS-CoV-2 variants may cause resistance at the immunity level against current vaccines. Some emergent new variants have increased transmissibility, infectivity, hospitalization, and mortality. Since the administration of the first SARS-CoV-2 vaccine to a human in March 2020, there is an ongoing global race against SARS-CoV-2 to control the current pandemic situation. Spike (S) glycoprotein of SARS-CoV-2 is the main target for current vaccine development, which can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. The effectiveness of SARS-CoV-2 vaccines and other therapeutics developments are limited by the new emergent variants at the global level. We have discussed the emergent variants of SARS-CoV-2 on the efficacy of developed vaccines. Presently, most of the vaccines have been tremendously effective in severe diseases. However, there are still noteworthy challenges in certifying impartial vaccines; the stories of re-infections are generating more stressful conditions, and this needs further clinical evaluation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Desarrollo de Vacunas
20.
Biomedicines ; 9(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34829741

RESUMEN

Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues. PARP (poly(ADP-ribose) polymerase) is a major protein and is involved in DNA repair pathways, base excision repair (BER) mechanisms, homologous recombination (HR), and nonhomologous end-joining (NEJ) deficiency-based repair mechanisms. DNA damage repair deficits cause an increased risk of tumor formation. Inhibitors of PARP favorably kill cancer cells in BRCA-mutations. For a few years, PARPi has shown promising activity as a chemotherapeutic agent in BRCA1- or BRCA2-associated breast cancers, and in combination with chemotherapy in triple-negative breast cancer. This review covers the current results of clinical trials testing and future directions for the field of PARP inhibitor development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA