Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(9)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37759737

RESUMEN

Abracl (ABRA C-terminal-like protein) is a small, non-typical winged-helix protein that shares similarity with the C-terminal domain of the protein ABRA (Actin-Binding Rho-Activating protein). The role of Abracl in the cell remains elusive, although in cancer cells, it has been implicated in proliferation, migration and actin dynamics. Our previous study showed that Abracl mRNA was expressed in the dividing cells of the subpallial subventricular zone (SVZ), in the developing cortical plate (CP), and in the diencephalic SVZ; however, the molecular identities of the Abracl-expressing cell populations were not defined in that work. In this study, we use double immunofluorescence to characterize the expression of Abracl on sections of embryonic murine (E11.5-E18.5) and feline (E30/31-E33/34) telencephalon; to this end, we use a battery of well-known molecular markers of cycling (Ki67, Ascl1, Dlx2) or post-mitotic (Tubb3, Gad65/67, Lhx6 and Tbr1) cells. Our experiments show that Abracl protein has, compared to the mRNA, a broader expression domain, including, apart from proliferating cells of the subpallial and diencephalic SVZ, post-mitotic cells occupying the subpallial and pallial mantle (including the CP), as well as subpallial-derived migrating interneurons. Interestingly, in late embryonic developmental stages, Abracl was also transiently detected in major telencephalic fiber tracts.


Asunto(s)
Actinas , Mamíferos , Animales , Gatos , Ratones , Corteza Cerebral , ARN Mensajero/genética , Telencéfalo
2.
Brain Sci ; 11(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946187

RESUMEN

MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.

3.
Front Neuroanat ; 15: 785541, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975420

RESUMEN

The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.

4.
PLoS One ; 13(12): e0209369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30571765

RESUMEN

The full-length members of the Groucho/Transducin-like Enhancer of split gene family, namely Grg1-4, encode nuclear corepressors that act either directly, via interaction with transcription factors, or indirectly by modifying histone acetylation or chromatin structure. In this work we describe a detailed expression analysis of Grg1-4 family members during embryonic neurogenesis in the developing murine telencephalon. Grg1-4 presented a unique, complex yet overlapping expression pattern; Grg1 and Grg3 were mainly detected in the proliferative zones of the telencephalon, Grg2 mainly in the subpallium and finally, Grg4 mainly in the subpallial post mitotic neurons. In addition, comparative analysis of the expression of Grg1-4 revealed that, at these stages, distinct telencephalic progenitor domains or structures are characterized by the presence of different combinations of Grg repressors, thus forming a "Grg-mediated repression map".


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Mapas de Interacción de Proteínas/fisiología , Proteínas Represoras/metabolismo , Telencéfalo/embriología , Animales , Embrión no Mamífero , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras/genética
5.
Hippocampus ; 25(4): 511-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25394554

RESUMEN

Structural and functional dissociation between the septal and the temporal part of the dentate gyrus predispose for possible differentiations in the ongoing neurogenesis process of the adult hippocampus. In this study, BrdU-dated subpopulations of the rat septal and temporal dentate gyrus (coexpressing GFAP, DCX, NeuN, calretinin, calbindin, S100, caspase-3 or fractin) were quantified comparatively at 2, 5, 7, 14, 21, and 30 days after BrdU administration in order to examine the successive time-frames of the neurogenesis process, the glial or neuronal commitment of newborn cells and the occurring apoptotic cell death. Newborn neurons' migration from the neurogenic subgranular zone to the inner granular cell layer and expression of glutamate NMDA and AMPA receptors were also studied. BrdU immunocytochemistry revealed comparatively higher numbers of BrdU(+) cells in the septal part, but stereological analysis of newborn and total granule cells showed an identical ratio in the two parts, indicating an equivalent neurogenic ability, and a common topographical pattern along each part's longitudinal and transverse axis. Similarly, both parts exhibited extremely low levels of newborn glial and apoptotic cells. However, despite the initially equal division rate and pattern of the septal and temporal proliferating cells, their later proliferative profile diverged in the two parts. Dynamic differences in the differentiation, migration and maturation process of the two BrdU-incorporating subpopulations of newborn neurons were also detected, along with differences in their survival pattern. Therefore, we propose that various factors, including developmental date birth, local DG microenvironment and distinct functionality of the two parts may be the critical regulators of the ongoing neurogenesis process, leading the septal part to a continuous, rapid, and less-disciplined genesis rate, whereas the quiescent temporal microenvironment preserves a quite steady, less-demanding neurogenesis process.


Asunto(s)
Giro Dentado/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Tabique del Cerebro/citología , Análisis de Varianza , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Giro Dentado/fisiología , Proteína Doblecortina , Masculino , Ratas , Ratas Wistar , Tabique del Cerebro/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA