Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 852: 158502, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058332

RESUMEN

Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 µg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 µg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 µg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 µg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 µg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 µg/mL.


Asunto(s)
Aedes , Anopheles , Culex , Ciclobutanos , Insecticidas , Animales , Pez Cebra , Insecticidas/toxicidad , Acetilcolinesterasa , Propano/farmacología , Filogenia , Ciclobutanos/farmacología , Extractos Vegetales/farmacología , Control de Mosquitos , Larva , Fenoles , ADN Ribosómico , Diinos/farmacología , Hojas de la Planta
2.
Arch Microbiol ; 204(4): 218, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333982

RESUMEN

The present work was designed to isolate and characterise the actinobacteria in the Polar Front region of the Southern Ocean waters and species of Nocardiopsis and Streptomyces were identified. Among those, the psychrophilic actinobacterium, Nocardiopsis dassonvillei PSY13 was found to have good cellulolytic activity and it was further studied for the production and characterisation of cold-active cellulase enzyme. The latter was found to have a specific activity of 6.36 U/mg and a molar mass of 48 kDa with a 22.9-fold purification and 5% recovery at an optimum pH of 7.5 and a temperature of 10 °C. Given the importance of psychrophilic actinobacteria, N. dassonvillei PSY13 can be further exploited for its benefits, meaning that the Southern Ocean harbours biotechnologically important microorganisms that can be further explored for versatile biotechnological and industrial applications.


Asunto(s)
Celulasa , Celulosa , Frío , Hidrólisis , Nocardiopsis
3.
Environ Sci Pollut Res Int ; 29(57): 86308-86319, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35040048

RESUMEN

Borassus flabellifer leaf extract has been used for rapid biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) due to rich source of bioactive compounds. The synthesized ZnO-NPs were preliminarily confirmed by UV-visible spectroscopy adsorption peak range at 365 nm. The XRD (X-ray diffraction) confirms purity of ZnO-NPs that were crystalline in nature. The analysis of FT-IR (Fourier-transform infrared spectroscopy) confirms the presence of the following functional group such as alcohol, phenols, carboxylic acids, primary amides, secondary amides, and alkyl halide. The Field Emission Scanning Electron Microscope (FE-SEM) analysis indicated that ZnO-NPs were in spherical shape, followed by EDX analysis which confirmed the presence of Zn-element. Antimicrobial effect of ZnO-NPs was investigated using different clinical pathogens like bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella Pneumonia, and Pseudomonas aeruginosa and fungi Aspergillus flavus, Candida albicans, and Penicillium expansum which confirmed ZnO-NPs efficiency as an antimicrobial agent. ZnO-NP antimicrobial efficiency was observed in higher zone of inhibition at 50 µg/mL concentrations. Antioxidant activity was ascertained to be used for several biomedical applications. The ZnO-NPs efficiently degraded the environmental toxic dyes (methylene blue and crystal violet) under sunlight, and up to 95% higher degradation was achieved in both dyes. In support of photo light degradation, the study was progressed to understand the ZnO-dye interaction stability using molecular mechanism, and it shows efficient bonding features in the NPs environment. Overall, this investigation has great potential for being an effective and eco-friendly material used in environmental applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/química , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antibacterianos/química , Escherichia coli , Antiinfecciosos/farmacología , Difracción de Rayos X , Extractos Vegetales/farmacología , Extractos Vegetales/química , Colorantes/farmacología , Amidas
4.
Saudi J Biol Sci ; 28(1): 833-839, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424373

RESUMEN

The mass organic compound 4-nitrophenol with low molecular is involved in many chemicals processes and most common organic pollutants. 4-Nitrophenol (4-NP) existing in soils and water bodies, thereby causing severe environmental impact and health risk. Even low concentrations are harmful to health and potential mutagenic and carcinogenic. Though the existing methods of biodegradation though effective, their popularity is hindered due to high cost. Hence, in the present study a less expensive method involving the use of Pseudomonas sp. with gum arabic (PAA) was tested. The biodegradation of 4-NP was thoroughly investigated by progressive characterization methods. The promising Pseudomonas sp. YPS 3 was identified with biochemical and molecular identification process. The average particle sizes of stable crystalline PAA was 8-20 nm. The experiments were conducted with optimized parameters viz., pH (7.0), concentration (30 ppm), temperature (37 °C) and time (6 h). The study was tested as adsorbent particle size on 4-NP concurrent adsorption-biodegradation. In addition, these Pseudomonas sp. YPS3 and its PAA are used as an eco-friendly for removal of toxic organic 4-NP pollutant from the ecosystems.

5.
Int J Biol Macromol ; 165(Pt B): 2412-2418, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33132130

RESUMEN

Drug resistance has become a major threat due to the frequent use of commercial antibiotics and there is an urgent need to combat this problem. Having this in mind, the present research was aimed at developing a novel P. aeruginosa puBac bacteriocin molecule. The bacteriocin was purified by ammonium sulfate precipitation followed by Sepharose FF and Sephadex G15 column purification and the purified bacteriocin has been reported to have the molar mass of 43 kDa. The findings of the optimization showed that 3500 AU/mL of bacteriocin was obtained at 37 °C, 3410 AU/mL of bacteriocin at 6.5 pH and 3780 AU/mL of bacteriocin at 48 h of incubation time. In addition, 3863 AU/mL of bacteriocin activity was obtained with Tween-80 followed by 3789 AU/mL with a concentration of 2% NaCl and 4200 AU/mL for Fe2+. PuBac bacteriocin has been shown to have a significant effect on test pathogens. For example, E. coli was found to have 3.6 µM of MIC, followed by Staphylococcus sp. with 6.15 µM of MIC and Bacillus sp. with a 7.5 µM of MIC. The remarkable properties of bacteriocin suggest that it could be used in various pharmaceutical and food industries.


Asunto(s)
Bacteriocinas/análisis , Microbiología Industrial , Pseudomonas aeruginosa/química , Bacteriocinas/aislamiento & purificación , Bacteriocinas/farmacología , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Filogenia , Pseudomonas aeruginosa/crecimiento & desarrollo , Tensoactivos/química , Temperatura
6.
Sci Rep ; 10(1): 556, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953455

RESUMEN

The aim of the present study was to elucidate the anti-diabetic effects of the crude polysaccharide and rhamnose-enriched polysaccharide derived from G. lithophila on streptozotocin (STZ)-induced diabetic Wistar rats. Treatment with crude polysaccharide and rhamnose-enriched polysaccharide showed increases in body weight and pancreatic insulin levels and a decrease in blood glucose levels compared with control diabetic rats. The blood concentrations of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) decreased, and high-density lipoprotein (HDL) increased both in the crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased, and malondialdehyde (MDA) levels decreased in the livers, kidneys and pancreases of crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Immunohistological examination further confirmed that restoration of the normal cellular size of the islets of Langerhans and the rebirth of ß-cells were found to be greater in the body region than in the head and tail regions of the pancreas. The crude polysaccharide- and rhamnose-enriched polysaccharide-treated diabetic rats showed normal blood glucose levels and insulin production, and reversed cholesterol levels and enzymatic actions. Therefore, rhamnose-enriched polysaccharide from G. lithophila acts as a potent anti-diabetic agent to treat diabetes and can lead to the development of an alternative medicine for diabetes in the future.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Polisacáridos/administración & dosificación , Ramnosa/química , Rhodophyta/química , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Colesterol/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Masculino , Extractos Vegetales/química , Polisacáridos/química , Polisacáridos/farmacología , Ratas , Ratas Wistar , Estreptozocina , Resultado del Tratamiento
7.
Curr Probl Cancer ; 44(4): 100515, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31806240

RESUMEN

Comprehensive genomic profiling is expected to revolutionize cancer therapy. c-Met signaling is responsible for tumorigenesis in various cancers. In this prospective, we present the prevalence of c-Met mutations and copy number alterations across various solid tumors. We used major databases like cBioportal, PubMed, and COSMIC for c-Met mutation and amplification data collection from various cancers. Our result shows complete details about c-Met mutation and its clinical data of various cancers. Hotspot mutation of human c-Met protein reveals that repeatedly and most mutated regions and these hotspots may be a diagnostic tool for cancer confirmation. Amino acid and nucleotide changes and their prevalence were reported in a number of individual cancers. However, we collectively present the amino acid and nucleotide changes in various cancers in this review. Our collection of data for c-Met mutation and its distribution in different cancer tissue is showing that the missense mutation is the major one in all type of cancers. Copy number variation data showing amplification and deletion of human c-Met from various tumor types, lung and central nervous system tumors showing high amplification comparatively other types.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mutación , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Humanos , Neoplasias/metabolismo
8.
Curr Pharm Des ; 25(24): 2626-2636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31603056

RESUMEN

Nanoparticles have gained significant importance in the past two decades, due to their multifaceted applications in the field of nanomedicine. As our ecosystems and habitats are changing due to global warming, many new diseases are emerging continuously. Treating these costs a lot of money and mostly ends up in failure. In addition, frequent use of antibiotics to control the emerging diseases has led the pathogens to develop resistance to antibiotics. Hence, the nanoparticles are targeted to treat such diseases instead of the costly antibiotics. In particular, the biosynthesized nanoparticles have received considerable attention due to their simple, eco-friendly and promising activity. To highlight, microbial mediated nanoparticles have been found to possess higher activity and thus have a promising role in antimicrobial therapy to fight against the emerging drug-resistant pathogens. In this context, this review article is aimed at highlight the role of nanoparticles in the field of nanomedicine and importance of actinobacteria in the nanoparticle synthesis and their need in antimicrobial therapy. This is a comprehensive review, focusing on the potential of actinobacteria-mediated nanoparticles in the field of nanomedicine.


Asunto(s)
Actinobacteria , Antiinfecciosos/farmacología , Nanomedicina/tendencias , Nanopartículas
9.
J Environ Manage ; 237: 84-93, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30780057

RESUMEN

A mission for fast advancement has constrained us to unpredictably tap various natural assets. The reckless utilisation of fossil fuels led unmanageable wastes which have greatly affected our health and environment. Endeavours to address these difficulties have conveyed to the frontal area certain creative natural solutions particularly the utilisation of microbial digestion systems. In the previous two decades, the microbial fuel cell (MFC) innovation has caught the consideration of the researchers. The MFCs is a kind of bio-electrochemical framework with novel highlights, for example, power production, wastewater treatment, and biosensor applications. Lately, dynamic patterns in MFC inquire about on its synthetic, electrochemical, and microbiological perspectives have brought about its observable applications. The MFCs have begun as a logical interest, and in numerous regards, these remaining parts to be the situation. This is especially a result of the multidimensional uses of this eco-accommodating innovation. The innovation relies upon the electroactive microorganisms, prominently known as exoelectrogens. In the first place, it is the main innovation that can create energy out of waste, without the contribution of outer/extra energy. Modification of electrodes with nanomaterials, for example, gold nanoparticles and iron oxide nanoparticles or pretreatment techniques, for example, sonication and autoclave disinfection have indicated promising outcomes in improving MFC execution for power generation and wastewater treatment. The MFC innovation has been likewise explored for the remediation of different heavy metals and hazardous components, and to recognize the poisonous components in wastewater. What's more, the MFCs can be adjusted into microbial electrolysis cells to produce hydrogen energy from different natural sources. This article gives a thorough and cutting-edge appraisal of the novel magnitudes of the MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanopartículas del Metal , Biodegradación Ambiental , Electricidad , Electrodos , Oro , Percepción de Quorum , Aguas Residuales
10.
RSC Adv ; 9(35): 20472-20482, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35514737

RESUMEN

Herein, a polysaccharide obtained from Pleurotus sajor-caju was fractionated via anion-exchange column chromatography and purified using gel permeation column chromatography. The chemical characterization of the polysaccharide indicated that it contained 90.16% total carbohydrate, 0% protein, 12.7% ash and 5.2% moisture; on the other hand, the carbon, hydrogen and nitrogen contents were found to be 31.53, 4.28 and 3.01%, respectively. The polysaccharide has the molecular weight of 79 kDa; the chemical structure of the polysaccharide is →6)α-d-Glciv(1→6)α-d-Glciii(1→6)ß-d-Glcii(1→6)α-d-Glci(1→units. The polysaccharide exhibited the DPPH radical scavenging activity of 21.67-68.35% at 10-160 µg ml-1, ABTS radical scavenging activity of 16.01-70.09% at 25-125 µg ml-1, superoxide radical scavenging activity of 24.31-73.64% at 50-250 µg ml-1, hydroxyl radical scavenging activity of 16.64-63.51% at 25-125 µg ml-1 and reducing power of 0.366-1.678% at 10-120 µg ml; further evaluation of the polysaccharide revealed its anticancer activity of 18.61-63.21% at 100-500 µg ml-1 concentration against the AGS human gastric carcinoma cell line. The active principle of the polysaccharide may be used in the food and pharmacological industry in the future.

11.
Data Brief ; 18: 576-584, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29896530

RESUMEN

Identification of microorganisms plays a key role in the determination of the composition of microbial diversity for bioprospecting of biotechnologically important biomolecules. Digitalization is the process that solve discrepancies in microbial identification and cataloguing their diversity in distinct ecological habitats. In view of this connection, the psychrophilic and psychrotolerant actinobacteria were isolated from the water samples of the Polar Frontal region of the Southern Ocean. 16S rRNA gene sequencing for identification of psychrophiles was carried out and sequences were deposited in NCBI GeneBank. 16S rRNA gene sequences were used to create QR codes, CGR, FCGR and GC plot. This generated digital data help to relate the diversity amongst the isolated actinobacterial strains. The digital data showed considerable divergence among the actinobacterial strains. This generated bioinformatics data is helpful in the delimitation of the psychrophilic and psychrotolerant actinobacteria. Thus, the present study is a robust and accurate method for the identification of Polar microorganisms in a fixed boundary. Hence, this work will help to assign a unique digital identity to microorganisms in near future [9-19].

12.
Carbohydr Polym ; 195: 486-494, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29805003

RESUMEN

The crude polysaccharide was extracted from Grateloupia lithophila through hot-water extraction and deproteinization. Further, fractionated by anion-exchange column using Q-Sepharose and purified by gel-permeation chromatography using Sepharose 4-LB column. The crude and purified polysaccharide contains high carbohydrate (75.7 and 89.7%), ash (18.2 and 3.2%) and moisture (14.8 and 1.3%); the protein and uronic acid were absent. The molecular weight of crude, fractionated and purified polysaccharide was found to be 37 kDa, 29 kDa and 24 kDa. The monosaccharide composition of the crude polysaccharide was found to be having rhamnose (79.82%), fructose (8.38%), galactose (3.95%), xylose (3.31%) and glucose (1.48%); whereas the purified polysaccharide reported higher amount of rhamnose (95.88%), 1.13% of xylose and 2.21% of fructose. The structural elucidation of the purified polysaccharide was conformed as α-l-rhamnose through polarimetry, FT-IR and 1H NMR spectroscopy.

13.
Carbohydr Polym ; 181: 752-759, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29254032

RESUMEN

Green synthesis of silver nanoparticle (SNPs) has gained considerable attention in nano-biotechnology and nano-medicine owing their potency and eco-friendliness. In this, we account the exopolysaccharide and its mediated synthesis of SNPs and their biological activities. Exopolysaccharide of the Streptomyces violaceus composed of total carbohydrate (61.4%), ash (16.1%), moisture content (1.8%) and NMR confirmed their structural composition. SNPs synthesized by the exopolysaccharide, confirmed using UV-vis spectral analysis and characterized by TEM and XRD analyses. Further, the SNPs evaluated for its antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis using disc diffusion method. The SNPs has shown promising antibacterial activity were evaluated for MIC. Furthermore, the SNPs were tested for antioxidant activities and was found to have promising antioxidant activity over the standards. The above results prove that SNPs can be considered as a potent antibacterial and antioxidant drug in future.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Nanopartículas del Metal/uso terapéutico , Polisacáridos Bacterianos/química , Plata/química , Antibacterianos/síntesis química , Antioxidantes/síntesis química , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Peróxido de Hidrógeno/química , Hierro/química , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Polisacáridos Bacterianos/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Streptomyces/química
14.
Bioprocess Biosyst Eng ; 37(5): 783-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24061563

RESUMEN

A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett-Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Glucolípidos/biosíntesis , Streptomyces/crecimiento & desarrollo , Tensoactivos/metabolismo
15.
Int J Biol Macromol ; 59: 29-38, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23597709

RESUMEN

The isolation, optimization, purification and characterization of an extracellular polysaccharide (EPS) from a marine actinobacterium, Streptomyces violaceus MM72 were investigated. Medium composition and culture conditions for the EPS production by S. violaceus MM72 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of EPS production and central composite design used to optimize the concentration of the three significant variables: glucose, tryptone and NaCl. The preferable culture conditions for EPS production were pH 7.0, temperature 35°C and NaCl concentration 2.0% for 120h with fructose and yeast extract as best carbon and nitrogen sources, respectively. The results showed that S. violaceus MM72 produced a kind of EPS having molecular weight of 8.96×10(5)Da. In addition, the EPS showed strong DPPH radical-scavenging activity, superoxide scavenging and metal chelating activities while moderate inhibition of lipid peroxidation and reducing activities determined in this study. These results showed the great potential of EPS produced by S. violaceus MM72 could be used in industry in place of synthetic compounds. The EPS from S. violaceus MM72 may be a new source of natural antioxidants with potential value for health, food and therapeutics.


Asunto(s)
Depuradores de Radicales Libres/aislamiento & purificación , Polisacáridos Bacterianos/aislamiento & purificación , Streptomyces/metabolismo , Compuestos de Bifenilo/antagonistas & inhibidores , Medios de Cultivo , Análisis Factorial , Fermentación , Depuradores de Radicales Libres/farmacología , Fructosa/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Peroxidación de Lípido/efectos de los fármacos , Peso Molecular , Peptonas/metabolismo , Picratos/antagonistas & inhibidores , Polisacáridos Bacterianos/farmacología , Cloruro de Sodio/metabolismo , Streptomyces/química , Superóxidos/antagonistas & inhibidores , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA