Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21262006

RESUMEN

The interferon pathway represents a key antiviral defense mechanism and is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and blocking interferon signaling through JAK STAT inhibition to limit cytokine storms have been proposed. However, little is known so far about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. In the current study, we investigated downstream targets of interferon signaling, including STAT1, pSTAT1 and 2 and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild and 13 with severe infection. We report an upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Most interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe COVID-19 cases compared to mild cases. Contrary to the baseline whole protein STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN- and IFN-{gamma} stimulation of PBMCs from patients with severe COVID-19. The data suggest impaired STAT1 transcriptional upregulation among severely infected patients which may represent a potential predictive biomarker and may allow stratification of patients for certain interferon-pathway targeted treatments.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256192

RESUMEN

RationaleCOVID-19 convalescent plasma (CCP) has been considered a treatment option in COVID-19. ObjectivesTo assess the efficacy of neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment. MethodsPatients (n=105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. Primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21. The trial is registered: clinicaltrials.gov #NCT04433910. Measurements and main resultsThe primary outcome occurred in 43.4% of patients in the CCP and 32.7% in the control group (p=0.32). The median time to clinical improvement was 26 days (IQR 15-not reached (n.r.)) in the CCP group and 66 days (IQR 13-n.r.) in the control group (p=0.27). Median time to discharge from hospital was 31 days (IQR 16-n.r.) in the CCP and 51 days (IQR 20-n.r.) in the control group (p=0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies the primary outcome occurred in 56.0% (versus 32.1%), with a shorter interval to clinical improvement, shorter time to hospital discharge and better survival compared to the control group. ConclusionCCP added to standard treatment did not result in a significant difference in the primary and secondary outcomes. A pre-defined subgroup analysis showed a significant benefit for CCP among those who received a larger amount of neutralizing antibodies.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-441188

RESUMEN

STRUCTURED ABSTRACTHyperinflammation is frequently observed in patients with severe COVID-19. Inadequate and defective IFN type I responses against SARS-CoV-2, associated with autoantibodies in a proportion of patients, lead to severe courses of disease. In addition, hyperactive responses of the humoral immune system have been described. In the current study we investigated a possible role of neutralizing autoantibodies against antiinflammatory mediators. Plasma from adult patients with severe and critical COVID-19 was screened by ELISA for antibodies against PGRN, IL-1-Ra, IL-10, IL-18BP, IL-22BP, IL-36-Ra, CD40, IFN-2, IFN-{gamma}, IFN-{omega} and serpinB1. Autoantibodies were characterized and the antigens were analyzed for immunogenic alterations. In a discovery cohort with severe to critical COVID-19 high titers of PGRN-autoantibodies were detected in 11 of 30 (36.7%), and of IL-1-Ra-autoantibodies in 14 of 30 (46.7%) patients. In a validation cohort of 64 patients with critical COVID-19 high-titer PGRN-Abs were detected in 25 (39%) and IL-1-Ra-Abs in 32 of 64 patients (50%). PGRN-Abs and IL-1-Ra-Abs belonged to IgM and several IgG subclasses. In separate cohorts with non-critical COVID-19, PGRN-Abs and IL-1-Ra-Abs were detected in low frequency (i.e. in < 5% of patients) and at low titers. Neither PGRN-nor IL-1-Ra-Abs were found in 40 healthy controls vaccinated against SARS-CoV-2 or 188 unvaccinated healthy controls. PGRN-Abs were not cross-reactive against SARS-CoV-2 structural proteins nor against IL-1-Ra. Plasma levels of both free PGRN and free IL-1-Ra were significantly decreased in autoantibody-positive patients compared to Ab-negative and non-COVID-19 controls. In vitro PGRN-Abs from patients functionally reduced PGRN-dependent inhibition of TNF- signaling, and IL-1-Ra-Abs from patients reduced IL-1-Ra- or anakinra-dependent inhibition of IL-1{beta} signaling. The pSer81 hyperphosphorylated PGRN isoform was exclusively detected in patients with high-titer PGRN-Abs; likewise, a hyperphosphorylated IL-1-Ra isoform was only found in patients with high-titer IL-1-Ra-Abs. Thr111 was identified as the hyperphophorylated amino acid of IL-1-Ra. In longitudinally collected samples hyperphosphorylated isoforms of both PGRN and IL-1-Ra emerged transiently, and preceded the appearance of autoantibodies. In hospitalized patients, the presence of IL-1-Ra-Abs or IL-1-Ra-Abs in combination with PGRN-Abs was associated with a higher morbidity and mortality. To conclude, neutralizing autoantibodies to IL-1-Ra and PGRN occur in a significant portion of patients with critical COVID-19, with a concomitant decrease in circulating free PGRN and IL-1-Ra, indicative of a misdirected, proinflammatory autoimmune response. The break of self-tolerance is likely caused by atypical hyperphosphorylated isoforms of both antigens, whose appearances precede autoantibody induction. Our data suggest that these immunogenic secondary modifications are induced by the SARS-CoV-2-infection itself or the inflammatory environment evoked by the infection and predispose for a critical course of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...