Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 5276, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902248

RESUMEN

Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.


Asunto(s)
Microscopía por Crioelectrón , Mycobacterium smegmatis , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Transporte de Electrón , Oxidación-Reducción , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Protones , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/química , Oxígeno/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Dominio Catalítico , Modelos Moleculares
2.
Biochim Biophys Acta Bioenerg ; 1863(7): 148583, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671795

RESUMEN

The superoxide anion - molecular oxygen reduced by a single electron - is produced in large amounts by enzymatic and adventitious reactions. It can perform a range of cellular functions, including bacterial warfare and iron uptake, signalling and host immune response in eukaryotes. However, it also serves as precursor for more deleterious species such as the hydroxyl anion or peroxynitrite and defense mechanisms to neutralize superoxide are important for cellular health. In addition to the soluble proteins superoxide dismutase and superoxide reductase, recently the membrane embedded diheme cytochrome b561 (CybB) from E. coli has been proposed to act as a superoxide:quinone oxidoreductase. Here, we confirm superoxide and cellular ubiquinones or menaquinones as natural substrates and show that quinone binding to the enzyme accelerates the reaction with superoxide. The reactivity of the substrates is in accordance with the here determined midpoint potentials of the two b hemes (+48 and -23 mV / NHE). Our data suggest that the enzyme can work near the diffusion limit in the forward direction and can also catalyse the reverse reaction efficiently under physiological conditions. The data is discussed in the context of described cytochrome b561 proteins and potential physiological roles of CybB.


Asunto(s)
Citocromos b , Superóxidos , Bacterias/metabolismo , Escherichia coli , Oxidorreductasas , Superóxidos/metabolismo
3.
Structure ; 30(3): 338-349.e3, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34910901

RESUMEN

Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.


Asunto(s)
Complejo IV de Transporte de Electrones , Hemo , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Vitamina K 2/metabolismo
4.
Nat Struct Mol Biol ; 25(12): 1128-1136, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518849

RESUMEN

In the mycobacterial electron-transport chain, respiratory complex III passes electrons from menaquinol to complex IV, which in turn reduces oxygen, the terminal acceptor. Electron transfer is coupled to transmembrane proton translocation, thus establishing the electrochemical proton gradient that drives ATP synthesis. We isolated, biochemically characterized, and determined the structure of the obligate III2IV2 supercomplex from Mycobacterium smegmatis, a model for Mycobacterium tuberculosis. The supercomplex has quinol:O2 oxidoreductase activity without exogenous cytochrome c and includes a superoxide dismutase subunit that may detoxify reactive oxygen species produced during respiration. We found menaquinone bound in both the Qo and Qi sites of complex III. The complex III-intrinsic diheme cytochrome cc subunit, which functionally replaces both cytochrome c1 and soluble cytochrome c in canonical electron-transport chains, displays two conformations: one in which it provides a direct electronic link to complex IV and another in which it serves as an electrical switch interrupting the connection.


Asunto(s)
Respiración de la Célula/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Complejo III de Transporte de Electrones/fisiología , Modelos Moleculares , Mycobacterium smegmatis/metabolismo , Microscopía por Crioelectrón , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/química , Mycobacterium smegmatis/citología , Oxidación-Reducción , Oxígeno , Estructura Terciaria de Proteína
5.
Nat Chem Biol ; 14(8): 788-793, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29915379

RESUMEN

Superoxide is a reactive oxygen species produced during aerobic metabolism in mitochondria and prokaryotes. It causes damage to lipids, proteins and DNA and is implicated in cancer, cardiovascular disease, neurodegenerative disorders and aging. As protection, cells express soluble superoxide dismutases, disproportionating superoxide to oxygen and hydrogen peroxide. Here, we describe a membrane-bound enzyme that directly oxidizes superoxide and funnels the sequestered electrons to ubiquinone in a diffusion-limited reaction. Experiments in proteoliposomes and inverted membranes show that the protein is capable of efficiently quenching superoxide generated at the membrane in vitro. The 2.0 Å crystal structure shows an integral membrane di-heme cytochrome b poised for electron transfer from the P-side and proton uptake from the N-side. This suggests that the reaction is electrogenic and contributes to the membrane potential while also conserving energy by reducing the quinone pool. Based on this enzymatic activity, we propose that the enzyme family be denoted superoxide oxidase (SOO).


Asunto(s)
Membrana Celular/enzimología , Citocromos b/metabolismo , Escherichia coli/enzimología , Depuradores de Radicales Libres/metabolismo , Superóxidos/metabolismo , Citocromos b/química , Citocromos b/genética , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica
6.
Proc Natl Acad Sci U S A ; 115(12): 3048-3053, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507228

RESUMEN

The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome c, suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Simulación por Computador , Citocromos c/química , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/metabolismo , Lípidos/química , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Protein Sci ; 26(8): 1653-1666, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28543736

RESUMEN

Membrane proteins control a large number of vital biological processes and are often medically important-not least as drug targets. However, membrane proteins are generally more difficult to work with than their globular counterparts, and as a consequence comparatively few high-resolution structures are available. In any membrane protein structure project, a lot of effort is usually spent on obtaining a pure and stable protein preparation. The process commonly involves the expression of several constructs and homologs, followed by extraction in various detergents. This is normally a time-consuming and highly iterative process since only one or a few conditions can be tested at a time. In this article, we describe a rapid screening protocol in a 96-well format that largely mimics standard membrane protein purification procedures, but eliminates the ultracentrifugation and membrane preparation steps. Moreover, we show that the results are robustly translatable to large-scale production of detergent-solubilized protein for structural studies. We have applied this protocol to 60 proteins from an E. coli membrane protein library, in order to find the optimal expression, solubilization and purification conditions for each protein. With guidance from the obtained screening data, we have also performed successful large-scale purifications of several of the proteins. The protocol provides a rapid, low cost solution to one of the major bottlenecks in structural biology, making membrane protein structures attainable even for the small laboratory.


Asunto(s)
Biología Computacional/métodos , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/química , Ensayos Analíticos de Alto Rendimiento/economía , Proteínas de la Membrana/aislamiento & purificación , Cromatografía de Afinidad/instrumentación , Cromatografía de Afinidad/métodos , Cromatografía en Gel/instrumentación , Cromatografía en Gel/métodos , Biología Computacional/economía , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Expresión Génica , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Biblioteca de Péptidos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Factores de Tiempo
8.
Biochim Biophys Acta ; 1858(12): 2984-2992, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27620332

RESUMEN

We used the amphipathic styrene maleic acid (SMA) co-polymer to extract cytochrome c oxidase (CytcO) in its native lipid environment from S. cerevisiae mitochondria. Native nanodiscs containing one CytcO per disc were purified using affinity chromatography. The longest cross-sections of the native nanodiscs were 11nm×14nm. Based on this size we estimated that each CytcO was surrounded by ~100 phospholipids. The native nanodiscs contained the same major phospholipids as those found in the mitochondrial inner membrane. Even though CytcO forms a supercomplex with cytochrome bc1 in the mitochondrial membrane, cyt. bc1 was not found in the native nanodiscs. Yet, the loosely-bound Respiratory SuperComplex factors were found to associate with the isolated CytcO. The native nanodiscs displayed an O2-reduction activity of ~130 electrons CytcO-1s-1 and the kinetics of the reaction of the fully reduced CytcO with O2 was essentially the same as that observed with CytcO in mitochondrial membranes. The kinetics of CO-ligand binding to the CytcO catalytic site was similar in the native nanodiscs and the mitochondrial membranes. We also found that excess SMA reversibly inhibited the catalytic activity of the mitochondrial CytcO, presumably by interfering with cyt. c binding. These data point to the importance of removing excess SMA after extraction of the membrane protein. Taken together, our data shows the high potential of using SMA-extracted CytcO for functional and structural studies.


Asunto(s)
Complejo IV de Transporte de Electrones/aislamiento & purificación , Lípidos/análisis , Saccharomyces cerevisiae/enzimología , Dominio Catalítico , Complejo IV de Transporte de Electrones/química , Maleatos/farmacología , Nanopartículas , Poliestirenos/farmacología
9.
J Cell Sci ; 124(Pt 16): 2797-805, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21807944

RESUMEN

GDNF (glial cell line-derived neurotrophic factor) promotes the differentiation and migration of GABAergic neuronal precursors of the medial ganglionic eminence (MGE). These functions are dependent on the GPI-anchored receptor GFRα1, but independent of its two known transmembrane receptor partners RET and NCAM. Here we show that soluble GFRα1 is also able to promote differentiation and migration of GABAergic MGE neurons. These activities require endogenous production of GDNF. Although GDNF responsiveness is abolished in Gfra1(-/-) neurons, it can be restored upon addition of soluble GFRα1, a result that is only compatible with the existence of a previously unknown transmembrane signaling partner for the GDNF-GFRα1 complex in GABAergic neurons. The roles of two candidate transmembrane receptors previously implicated in GABAergic interneuron development--MET, a receptor for hepatocyte growth factor (HGF), and ErbB4, the neuregulin receptor--were examined. GDNF did not induce the activation of either receptor, nor did inhibition of MET or ErbB4 impair GDNF activity in GABAergic MGE neurons. Unexpectedly, however, inhibition of MET or HGF per se promoted neuronal differentiation and migration and enhanced the activity of GDNF on MGE neurons. These effects were dependent on endogenous GDNF and GFRα1, suggesting that MET signaling negatively regulates GDNF activity in the MGE. In agreement with this, Met mutant MGE neurons showed enhanced responses to GDNF and inhibition of MET or HGF increased Gfra1 mRNA expression in MGE cells. In vivo, expression of MET and GFRα1 overlapped in the MGE, and a loss-of-function mutation in Met increased Gfra1 expression in this region. Together, these observations demonstrate the existence of a novel transmembrane receptor partner for the GDNF-GFRα1 complex and uncover an unexpected interplay between GDNF-GFRα1 and HGF-MET signaling in the early diversification of cortical GABAergic interneuron subtypes.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Eminencia Media/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Anticuerpos Bloqueadores/farmacología , Células COS , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Chlorocebus aethiops , Receptores ErbB/antagonistas & inhibidores , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/patología , Ganglios/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/inmunología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Indoles/farmacología , Eminencia Media/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Quinazolinas , Receptor ErbB-4 , Transducción de Señal/genética , Sulfonamidas/farmacología , Tirfostinos/farmacología
10.
J Biol Chem ; 283(20): 13792-8, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18353777

RESUMEN

The neural cell adhesion molecule NCAM binds glial cell line-derived neurotrophic factor (GDNF) through specific determinants located in its third immunoglobulin (Ig) domain. However, high affinity GDNF binding and downstream signaling depend upon NCAM co-expression with the GDNF co-receptor GFRalpha1. GFRalpha1 promotes high affinity GDNF binding to NCAM and down-regulates NCAM-mediated homophilic cell adhesion, but the mechanisms underlying these effects are unknown. NCAM and GFRalpha1 interact at the plasma membrane, but the molecular determinants involved have not been characterized nor is it clear whether their interaction is required for GFRalpha1 regulation of NCAM function. We have investigated the structure-function relationships underlying GFRalpha1 binding to NCAM in intact cells. The fourth Ig domain of NCAM was both necessary and sufficient for the interaction of NCAM with GFRalpha1. Moreover, although the N-terminal domain of GFRalpha1 had previously been shown to be dispensable for GDNF binding, we found that it was both necessary and sufficient for the efficient interaction of this receptor with NCAM. GFRalpha1 lacking its N-terminal domain was still able to potentiate GDNF binding to NCAM and assemble into a tripartite receptor complex but showed a reduced capacity to attenuate NCAM-mediated cell adhesion. On its own, the GFRalpha1 N-terminal domain was sufficient to decrease NCAM-mediated cell adhesion. These results indicate that direct receptor-receptor interactions are not required for high affinity GDNF binding to NCAM but play an important role in the regulation of NCAM-mediated cell adhesion by GFRalpha1.


Asunto(s)
Regulación de la Expresión Génica , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/química , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Animales , Células COS , Adhesión Celular , Chlorocebus aethiops , Reactivos de Enlaces Cruzados/farmacología , Glicosilación , Humanos , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA