Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3596, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678037

RESUMEN

The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.


Asunto(s)
Extinción Biológica , Helechos , Fósiles , Sedimentos Geológicos , Mercurio , Mercurio/análisis , Sedimentos Geológicos/química , Alemania , Erupciones Volcánicas , Mutagénesis , Clima , Esporas
2.
Nat Geosci ; 17(1): 104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223495

RESUMEN

[This corrects the article DOI: 10.1038/s41561-023-01234-y.].

3.
Nat Commun ; 14(1): 7230, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945579

RESUMEN

Gradual climate cooling and CO2 decline in the Miocene were recently shown not to be associated with major ice volume expansion, challenging a fundamental paradigm in the functioning of the Antarctic cryosphere. Here, we explore Miocene ice-ocean-climate interactions by presenting a multi-proxy reconstruction of subtropical front migration, bottom water temperature and global ice volume change, using dinoflagellate cyst biogeography, benthic foraminiferal clumped isotopes from offshore Tasmania. We report an equatorward frontal migration and strengthening, concurrent with surface and deep ocean cooling but absence of ice volume change in the mid-late-Miocene. To reconcile these counterintuitive findings, we argue based on new ice sheet modelling that the Antarctic ice sheet progressively lowered in height while expanding seawards, to maintain a stable volume. This can be achieved with rigorous intervention in model precipitation regimes on Antarctica and ice-induced ocean cooling and requires rethinking the interactions between ice, ocean and climate.

4.
Nat Geosci ; 16(8): 730-738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564379

RESUMEN

The Middle Eocene Climatic Optimum (around 40 million years ago) was a roughly 400,000-year-long global warming phase associated with an increase in atmospheric CO2 concentrations and deep-ocean acidification that interrupted the Eocene's long-term cooling trend. The unusually long duration, compared with early Eocene global warming phases, is puzzling as temperature-dependent silicate weathering should have provided a negative feedback, drawing down CO2 over this timescale. Here we investigate silicate weathering during this climate warming event by measuring lithium isotope ratios (reported as δ7Li), which are a tracer for silicate weathering processes, from a suite of open-ocean carbonate-rich sediments. We find a positive δ7Li excursion-the only one identified for a warming event so far -of ~3‰. Box model simulations support this signal to reflect a global shift from congruent weathering, with secondary mineral dissolution, to incongruent weathering, with secondary mineral formation. We surmise that, before the climatic optimum, there was considerable soil shielding of the continents. An increase in continental volcanism initiated the warming event, but it was sustained by an increase in clay formation, which sequestered carbonate-forming cations, short-circuiting the carbonate-silicate cycle. Clay mineral dynamics may play an important role in the carbon cycle for climatic events occurring over intermediate (i.e., 100,000 year) timeframes.

5.
Sci Adv ; 9(14): eade5466, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027462

RESUMEN

Superimposed on long-term late Paleocene-early Eocene warming (~59 to 52 million years ago), Earth's climate experienced a series of abrupt perturbations, characterized by massive carbon input into the ocean-atmosphere system and global warming. Here, we examine the three most punctuated events of this period, the Paleocene-Eocene Thermal Maximum and Eocene Thermal Maximum 2 and 3, to probe whether they were initiated by climate-driven carbon cycle tipping points. Specifically, we analyze the dynamics of climate and carbon cycle indicators acquired from marine sediments to detect changes in Earth system resilience and to identify positive feedbacks. Our analyses suggest a loss of Earth system resilience toward all three events. Moreover, dynamic convergent cross mapping reveals intensifying coupling between the carbon cycle and climate during the long-term warming trend, supporting increasingly dominant climate forcing of carbon cycle dynamics during the Early Eocene Climatic Optimum when these recurrent global warming events became more frequent.

6.
Sci Adv ; 9(4): eabq0110, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696500

RESUMEN

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δ18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (δ18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher δ18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming.

7.
Paleoceanogr Paleoclimatol ; 37(8): e2021PA004405, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36248180

RESUMEN

Model simulations of past climates are increasingly found to compare well with proxy data at a global scale, but regional discrepancies remain. A persistent issue in modeling past greenhouse climates has been the temperature difference between equatorial and (sub-)polar regions, which is typically much larger in simulations than proxy data suggest. Particularly in the Eocene, multiple temperature proxies suggest extreme warmth in the southwest Pacific Ocean, where model simulations consistently suggest temperate conditions. Here, we present new global ocean model simulations at 0.1° horizontal resolution for the middle-late Eocene. The eddies in the high-resolution model affect poleward heat transport and local time-mean flow in critical regions compared to the noneddying flow in the standard low-resolution simulations. As a result, the high-resolution simulations produce higher surface temperatures near Antarctica and lower surface temperatures near the equator compared to the low-resolution simulations, leading to better correspondence with proxy reconstructions. Crucially, the high-resolution simulations are also much more consistent with biogeographic patterns in endemic-Antarctic and low-latitude-derived plankton, and thus resolve the long-standing discrepancy of warm subpolar ocean temperatures and isolating polar gyre circulation. The results imply that strongly eddying model simulations are required to reconcile discrepancies between regional proxy data and models, and demonstrate the importance of accurate regional paleobathymetry for proxy-model comparisons.

8.
Paleoceanogr Paleoclimatol ; 37(3): e2021PA004232, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35910591

RESUMEN

The Paleocene-Eocene Thermal Maximum (PETM) is recognized globally by a negative excursion in stable carbon isotope ratios (δ13C) in sedimentary records, termed the carbon isotope excursion (CIE). Based on the CIE, the cause, duration, and mechanisms of recovery of the event have been assessed. Here, we focus on the role of increased organic carbon burial on continental margins as a key driver of CO2 drawdown and global exogenic δ13C during the recovery phase. Using new and previously published sediment proxy data, we show evidence for widespread enhanced primary production, low oxygen waters, and high organic carbon (Corg) burial in marginal and restricted environments throughout the δ13C excursion. With a new biogeochemical box model for deep and marginal environments, we show that increased phosphorus availability and water column stratification on continental margins can explain the increased Corg burial during the PETM. Deoxygenation and recycling of phosphorus relative to Corg were relatively mild, compared to modern day anoxic marine systems. Our model reproduces the conditions reconstructed by field data, resulting in a burial of 6,000 Pg across the PETM, in excess of late Paleocene burial, and ∼3,300 Pg C for the critical first 40 kyr of the recovery, primarily located on continental margins. This value is consistent with prior data and model estimates (∼2,000-3,000 Pg C). To reproduce global exogenic δ13C patterns, this Corg burial implies an injection of 5,000-10,000 Pg C during the first ∼100-150 kyr of the PETM, depending on the source's δ13C (-11‰ to -55‰).

9.
Geophys Res Lett ; 49(4): e2021GL096859, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35865999

RESUMEN

Some lipid-biomarker-based sea surface temperature (SST) proxies applied in the modern Mediterranean Sea exhibit large offsets from expected values, generating uncertainties in climate reconstructions. Lateral transport of proxy carriers along ocean currents prior to burial can contribute to this offset between reconstructed and expected SSTs. We perform virtual particle tracking experiments to simulate transport prior to and during sinking and derive a quantitative estimate of transport bias for alkenones and glycerol dibiphytanyl glycerol tetraethers (GDGTs), which form the basis of the UK' 37 and TEX86 paleothermometers, respectively. We use a simple 30-day surface advection scenario and sinking speeds appropriate for the export of various proxy carriers (6, 12, 25, 50, 100, 250, 500, and 1000 md-1). For the assessed scenarios, lateral transport bias is generally small (always <0.85°C) within the Mediterranean Sea and does not substantially contribute to uncertainties in UK' 37- or TEX86-based SSTs.

10.
Global Biogeochem Cycles ; 36(5): e2021GB007231, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35859702

RESUMEN

We investigate if the commonly neglected riverine detrital carbonate fluxes might reconciliate several chemical mass balances of the global ocean. Particulate inorganic carbon (PIC) concentrations in riverine suspended sediments, that is, carbon contained by these detrital carbonate minerals, were quantified at the basin and global scale. Our approach is based on globally representative data sets of riverine suspended sediment composition, catchment properties, and a two-step regression procedure. The present-day global riverine PIC flux is estimated at 3.1 ± 0.3 Tmol C/y (13% of total inorganic carbon export and 4% of total carbon export) with a flux-weighted mean concentration of 0.26 ± 0.03 wt%. The flux prior to damming was 4.1 ± 0.5 Tmol C/y. PIC fluxes are concentrated in limestone-rich, rather dry and mountainous catchments of large rivers near Arabia, South East Asia, and Europe with 2.2 Tmol C/y (67.6%) discharged between 15°N and 45°N. Greenlandic and Antarctic meltwater discharge and ice-rafting additionally contribute 0.8 ± 0.3 Tmol C/y. This amount of detrital carbonate minerals annually discharged into the ocean implies a significant contribution of calcium (∼4.75 Tmol Ca/y) and alkalinity fluxes (∼10 Tmol (eq)/y) to marine mass balances and moderate inputs of strontium (∼5 Gmol Sr/y) based on undisturbed riverine and cryospheric inputs and a dolomite/calcite ratio of 0.1. Magnesium fluxes (∼0.25 Tmol Mg/y), mostly hosted by less-soluble dolomite, are rather negligible. These unaccounted fluxes help in elucidating respective marine mass balances and potentially alter conclusions based on these budgets.

11.
Harmful Algae ; 101: 101970, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526186

RESUMEN

Dissolved oceanic CO2 concentrations are rising as result of increasing atmospheric partial pressure of CO2 (pCO2), which has large consequences for phytoplankton. To test how higher CO2 availability affects different traits of the toxic dinoflagellate Alexandrium ostenfeldii, we exposed three strains of the same population to 400 and 1,000 µatm CO2, and measured traits including growth rate, cell volume, elemental composition, 13C fractionation, toxin content, and volatile organic compounds (VOCs). Strains largely increased their growth rates and particulate organic carbon and nitrogen production with higher pCO2 and showed significant changes in their VOC profile. One strain showed a significant decrease in both PSP and cyclic imine content and thereby in cellular toxicity. Fractionation against 13C increased in response to elevated pCO2, which may point towards enhanced CO2 acquisition and/or a downscaling of the carbon concentrating mechanisms. Besides consistent responses in some traits, other traits showed large variation in both direction and strength of responses towards elevated pCO2. The observed intraspecific variation in phenotypic plasticity of important functional traits within the same population may help A. ostenfeldii to negate the effects of immediate environmental fluctuations and allow populations to adapt more quickly to changing environments.


Asunto(s)
Dinoflagelados , Carbono , Nitrógeno , Océanos y Mares , Fitoplancton
12.
Paleoceanogr Paleoclimatol ; 35(10): e2020PA003932, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134852

RESUMEN

Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56-34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long-term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low-latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1-2‰ and 2-4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.

13.
Paleoceanogr Paleoclimatol ; 34(7): 1139-1156, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31598587

RESUMEN

During the last glacial period, climate conditions in the North Atlantic region were determined by the alternation of relatively warm interstadials and relatively cool stadials, with superimposed rapid warming (Dansgaard-Oeschger) and cooling (Heinrich) events. So far little is known about the impact of these rapid climate shifts on the seasonal variations in sea surface temperature (SST) within the North Atlantic region. Here, we present a high-resolution seasonal SST record for the past 152 kyrs derived from Integrated Ocean Drilling Program "Shackleton" Site U1385, offshore Portugal. Assemblage counts of dinoflagellates cysts (dinocysts) in combination with a modern analog technique (MAT), and regression analyses were used for the reconstructions. We compare our records with previously published SST records from the same location obtained from the application of MAT on planktonic foraminifera. Our dinocyst-based reconstructions confirm the impression of the Greenland stadials and interstadials offshore the Portuguese margin and indicate increased seasonal contrast of temperature during the cold periods of the glacial cycle (average 9.0 °C, maximum 12.2 °C) with respect to present day (5.1 °C), due to strong winter cooling by up to 8.3 °C. Our seasonal temperature reconstructions are in line with previously published data, which showed increased seasonality due to strong winter cooling during the Younger Dryas and the Last Glacial Maximum over the European continent and North Atlantic region. In addition, we show that over longer time scales, increased seasonal contrasts of temperature remained characteristic of the colder phases of the glacial cycle.

14.
Sci Rep ; 8(1): 13391, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190492

RESUMEN

Among the most urgent challenges in future climate change scenarios is accurately predicting the magnitude to which precipitation extremes will intensify. Analogous changes have been reported for an episode of millennial-scale 5 °C warming, termed the Palaeocene-Eocene Thermal Maximum (PETM; 56 Ma), providing independent constraints on hydrological response to global warming. However, quantifying hydrologic extremes during geologic global warming analogs has proven difficult. Here we show that water discharge increased by at least 1.35 and potentially up to 14 times during the early phase of the PETM in northern Spain. We base these estimates on analyses of channel dimensions, sediment grain size, and palaeochannel gradients across the early PETM, which is regionally marked by an abrupt transition from overbank palaeosol deposits to conglomeratic fluvial sequences. We infer that extreme floods and channel mobility quickly denuded surrounding soil-mantled landscapes, plausibly enhanced by regional vegetation decline, and exported enormous quantities of terrigenous material towards the ocean. These results support hypotheses that extreme rainfall events and associated risks of flooding increase with global warming at similar, but potentially at much higher, magnitudes than currently predicted.

15.
Nat Commun ; 9(1): 2877, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038400

RESUMEN

The Middle Eocene Climatic Optimum (MECO) represents a ~500-kyr period of global warming ~40 million years ago and is associated with a rise in atmospheric CO2 concentrations, but the cause of this CO2 rise remains enigmatic. Here we show, based on osmium isotope ratios (187Os/188Os) of marine sediments and published records of the carbonate compensation depth (CCD), that the continental silicate weathering response to the inferred CO2 rise and warming was strongly diminished during the MECO-in contrast to expectations from the silicate weathering thermostat hypothesis. We surmise that global early and middle Eocene warmth gradually diminished the weatherability of continental rocks and hence the strength of the silicate weathering feedback, allowing for the prolonged accumulation of volcanic CO2 in the oceans and atmosphere during the MECO. These results are supported by carbon cycle modeling simulations, which highlight the fundamental importance of a variable weathering feedback strength in climate and carbon cycle interactions in Earth's history.

16.
Nature ; 559(7714): 382-386, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967546

RESUMEN

Palaeoclimate reconstructions of periods with warm climates and high atmospheric CO2 concentrations are crucial for developing better projections of future climate change. Deep-ocean1,2 and high-latitude3 palaeotemperature proxies demonstrate that the Eocene epoch (56 to 34 million years ago) encompasses the warmest interval of the past 66 million years, followed by cooling towards the eventual establishment of ice caps on Antarctica. Eocene polar warmth is well established, so the main obstacle in quantifying the evolution of key climate parameters, such as global average temperature change and its polar amplification, is the lack of continuous high-quality tropical temperature reconstructions. Here we present a continuous Eocene equatorial sea surface temperature record, based on biomarker palaeothermometry applied on Atlantic Ocean sediments. We combine this record with the sparse existing data4-6 to construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution. We find that tropical and deep-ocean temperatures changed in parallel, under the influence of both long-term climate trends and short-lived events. This is consistent with the hypothesis that greenhouse gas forcing7,8, rather than changes in ocean circulation9,10, was the main driver of Eocene climate. Moreover, we observe a strong linear relationship between tropical and deep-ocean temperatures, which implies a constant polar amplification factor throughout the generally ice-free Eocene. Quantitative comparison with fully coupled climate model simulations indicates that global average temperatures were about 29, 26, 23 and 19 degrees Celsius in the early, early middle, late middle and late Eocene, respectively, compared to the preindustrial temperature of 14.4 degrees Celsius. Finally, combining proxy- and model-based temperature estimates with available CO2 reconstructions8 yields estimates of an Eocene Earth system sensitivity of 0.9 to 2.3 kelvin per watt per square metre at 68 per cent probability, consistent with the high end of previous estimates11.


Asunto(s)
Agua de Mar/análisis , Temperatura , Clima Tropical , Océano Atlántico , Dióxido de Carbono/análisis , Cambio Climático , Sedimentos Geológicos/química , Historia Antigua
17.
Sci Adv ; 3(3): e1600891, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28275727

RESUMEN

Global ocean temperatures rapidly warmed by ~5°C during the Paleocene-Eocene Thermal Maximum (PETM; ~56 million years ago). Extratropical sea surface temperatures (SSTs) met or exceeded modern subtropical values. With these warm extratropical temperatures, climate models predict tropical SSTs >35°C-near upper physiological temperature limits for many organisms. However, few data are available to test these projected extreme tropical temperatures or their potential lethality. We identify the PETM in a shallow marine sedimentary section deposited in Nigeria. On the basis of planktonic foraminiferal Mg/Ca and oxygen isotope ratios and the molecular proxy [Formula: see text], latest Paleocene equatorial SSTs were ~33°C, and [Formula: see text] indicates that SSTs rose to >36°C during the PETM. This confirms model predictions on the magnitude of polar amplification and refutes the tropical thermostat theory. We attribute a massive drop in dinoflagellate abundance and diversity at peak warmth to thermal stress, showing that the base of tropical food webs is vulnerable to rapid warming.


Asunto(s)
Fósiles , Calentamiento Global , Respuesta al Choque Térmico/fisiología , Plancton/fisiología
18.
Rapid Commun Mass Spectrom ; 31(1): 47-58, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27766694

RESUMEN

RATIONALE: Analyses of stable carbon isotope ratios (δ13 C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several µg of carbon. METHODS: Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. RESULTS: Analyses of the international IAEA CH-7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ13 C values. CONCLUSIONS: Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5-0.9‰. These promising results set the stage for investigating both δ13 C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

19.
Proc Natl Acad Sci U S A ; 113(43): 12059-12064, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27790990

RESUMEN

The Paleocene-Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of 13C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO2 from hydrothermal vent complexes. Here, we test for the contribution of carbon release associated with volcanic intrusions in the North Atlantic Igneous Province. We use dinoflagellate cyst and stable carbon isotope stratigraphy to date the active phase of a hydrothermal vent system and find it to postdate massive carbon release at the onset of the PETM. Crucially, however, it correlates to the period within the PETM of longer-term 13C-depleted carbon release. This finding represents actual proof of PETM carbon release from a particular reservoir. Based on carbon cycle box model [i.e., Long-Term Ocean-Atmosphere-Sediment Carbon Cycle Reservoir (LOSCAR) model] experiments, we show that 4-12 pulses of carbon input from vent systems over 60 kyr with a total mass of 1,500 Pg of C, consistent with the vent literature, match the shape of the CIE and pattern of deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that CH4 from the Norwegian Sea vent complexes was likely the main source of carbon during the PETM, following its dramatic onset.

20.
PLoS One ; 11(5): e0154370, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27153107

RESUMEN

Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL') and high-light ('HL') conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN') and nitrogen-replete batches ('HN'). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.


Asunto(s)
Ácidos/química , Isótopos de Carbono/análisis , Dinoflagelados/química , Nitrógeno/química , Océanos y Mares , Agua de Mar/química , Concentración de Iones de Hidrógeno , Luz , Biología Marina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...