Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 49(38): 8350-8, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20718440

RESUMEN

Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy.


Asunto(s)
Bencimidazoles/farmacología , Cinesinas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Antineoplásicos/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzamidas/metabolismo , Bencimidazoles/antagonistas & inhibidores , Sitios de Unión , Dicroismo Circular , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/química , Espectrometría de Masas , Nucleótidos/antagonistas & inhibidores , Nucleótidos/química , Estructura Terciaria de Proteína , Quinazolinas/metabolismo
2.
Biochemistry ; 48(12): 2661-74, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19161339

RESUMEN

MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. We have determined that the kinase domain spans residues 35-382 by proteolytic cleavage. The complete kinase domain has been crystallized and its X-ray crystal structure as a complex with magnesium and ATP-gammaS determined at 2.1 A. Unlike crystals of a truncated kinase domain previously published, the crystals of the intact domain can be grown either as a binary complex with a nucleotide or as a ternary complex with a nucleotide and one of a multitude of allosteric inhibitors. Further, the crystals allow for the determination of costructures with ATP competitive inhibitors. We describe the structures of nonphosphorylated MEK1 (npMEK1) binary complexes with ADP and K252a, an ATP-competitive inhibitor (see Table 1), at 1.9 and 2.7 A resolution, respectively. Ternary complexes have also been solved between npMEK1, a nucleotide, and an allosteric non-ATP competitive inhibitor: ATP-gammaS with compound 1 and ADP with either U0126 or the MEK1 clinical candidate PD325089 at 1.8, 2.0, and 2.5 A, respectively. Compound 1 is structurally similar to PD325901. These structures illustrate fundamental differences among various mechanisms of inhibition at the molecular level. Residues 44-51 have previously been shown to play a negative regulatory role in MEK1 activity. The crystal structure of the integral kinase domain provides a structural rationale for the role of these residues. They form helix A and repress enzymatic activity by stabilizing an inactive conformation in which helix C is displaced from its active state position. Finally, the structure provides for the first time a molecular rationale that explains how mutations in MEK may lead to the cardio-facio-cutaneous syndrome.


Asunto(s)
Inhibidores Enzimáticos/química , MAP Quinasa Quinasa 1/química , Nucleótidos/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Regulación Alostérica , Sitios de Unión , Carbazoles/química , Carbazoles/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Modelos Moleculares , Nucleótidos/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Biochemistry ; 46(5): 1358-67, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17260965

RESUMEN

MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. A wealth of information about the enzymatic activity of MEK1, its domain functions, and inhibitor action is available; however, the thermodynamic properties of the interaction between MEK1 and ligands, such as nucleotides and non-ATP-competitive inhibitors, have not been reported. This study describes the thermodynamic parameters for the binding interactions of MEK1, nucleotides, and non-ATP-competitive inhibitor complexes using temperature-dependent circular dichroism (TdCD) and isothermal titration calorimetry (ITC). Non-phosphorylated MEK1 (npMEK1) has a high affinity for both AMP-PNP and ADP (Kd approximately 2microM). The binding is enthalpically favored and Mg-dependent. The active, phosphorylated form of MEK1 (pMEK1) bound nucleotides with a similar high affinity (Kd approximately 2muM) and had a thermodynamic profile and Mg-dependence similar to that of the non-phosphorylated form. The non-ATP-competitive MEK1 inhibitors, U0126 and PD0325901, showed no preference for npMEK1 and pMEK1 by TdCD. TdCD results also showed that these inhibitors are more potent in the presence of the nucleotide than in its absence. The ternary complex, MEK1.PD0325901.nucleotide, showed synergistic binding as evidenced by a large, non-additive shift in the midpoint of the protein unfolding transition (Tm). This was apparent for both npMEK1 and pMEK1 using either ADP or AMP-PNP. ITC binding studies confirmed the synergistic binding effect. The ITC-determined affinity of nucleotide (AMP-PNP, ADP) binding to the npMEK1.PD0325901 complex was enhanced nearly 5-fold compared to nucleotide binding to npMEK1 alone. In addition, the affinity of PD0325901 binding to npMEK1.nucleotide complexes was increased nearly 10-fold relative to the affinity of PD0325901 for npMEK1 alone. These are the first thermodynamic binding studies that characterize the affinity of the allosteric non-ATP-competitive inhibitors U0126 and PD0325901 with and without the nucleotide. The results indicate these allosteric inhibitors have a dynamic range in the type of MEK1 activation states and nucleotide complexes that they can bind.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , Nucleótidos/metabolismo , Adenosina Difosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Regulación Alostérica , Unión Competitiva , Calorimetría , Dicroismo Circular , Humanos , Ligandos , MAP Quinasa Quinasa 1/química , Nucleótidos/química , Fosforilación , Unión Proteica , Termodinámica
4.
Protein Expr Purif ; 52(2): 446-56, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17175166

RESUMEN

Kinases exist in either a high or low activity form depending on the phosphorylation state of the activating lip. These two different forms of the same kinase may adopt different conformations that affect not only activity but also inhibitor binding and the ability to crystallize the protein. Therefore, isolation of homogenous preparations of the phosphorylated and non-phosphorylated versions of a kinase is critical for accurate biophysical measurements of activity, stability and ligand binding as well as for protein crystallization. The aim of the present study is the expression, purification and characterization of recombinant human MEK1 protein in both the activated and low-activity states. A baculovirus co-expression system was developed for obtaining high levels of activated, phosphorylated human MEK1 kinase. High-Five cells were co-infected with human MEK1 virus and Raf-BXB, an untagged constitutively active version of Raf which is the activating kinase for MEK1. Unphosphorylated MEK1 was generated by treating MEK1 isolated from High-Five baculovirus expression with lambda-phosphatase. The proteins were characterized by SDS-PAGE, LC-MS, Western blotting, enzymatic activity, and circular dichroism. Previous reports of MEK1 expression and purification yielded lower levels of protein and purity. The yield using High-Five cells was 5mg/L for phosphorylated MEK1 and 10mg/L for unphosphorylated MEK1. For phosphorylated MEK1, the specific activity was 3530U/mg, the IC(50) values for the non-specific kinase inhibitors K252a and K252b were 8 and 47nM, respectively, and the IC(50) for the MEK1 non-ATP competitive inhibitor, PD0325901, was 43nM.


Asunto(s)
Expresión Génica/fisiología , MAP Quinasa Quinasa 1/metabolismo , Animales , Western Blotting , Células Cultivadas , Cromatografía Liquida , Dicroismo Circular , Humanos , Insectos/citología , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/aislamiento & purificación , Espectrometría de Masas , Fosforilación , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...