Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2317285121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870053

RESUMEN

Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids. Results demonstrated that through regulation of organoid size and shape using quick reaggregation methods, retinal organoids were highly reproducible compared to more traditional methods. Additionally, the timed activation of BMP signaling within developing cells generated pure populations of retinal organoids at 100% efficiency from multiple widely used cell lines, with the default forebrain fate resulting from the inhibition of BMP signaling. Furthermore, given the ability to direct retinal or forebrain fates at complete purity, mRNA-seq analyses were then utilized to identify some of the earliest transcriptional changes that occur during the specification of these two lineages from a common progenitor. These improved methods also yielded retinal organoids with expedited differentiation timelines when compared to traditional methods. Taken together, the results of this study demonstrate the development of a highly reproducible and minimally variable method for generating retinal organoids suitable for analyzing the earliest stages of human retinal cell fate specification.


Asunto(s)
Diferenciación Celular , Organoides , Células Madre Pluripotentes , Retina , Humanos , Organoides/citología , Organoides/metabolismo , Retina/citología , Retina/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Reproducibilidad de los Resultados , Proteínas Morfogenéticas Óseas/metabolismo
2.
Front Immunol ; 14: 1278184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954612

RESUMEN

Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-ß (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFß and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFß expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.


Asunto(s)
Interleucina-10 , Linfocitos T Reguladores , Ratones , Animales , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción Forkhead/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1162786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621654

RESUMEN

Introduction: Endometriosis, a benign inflammatory disease whereby endometrial-like tissue grows outside the uterus, is a risk factor for endometriosis-associated ovarian cancers. In particular, ovarian endometriomas, cystic lesions of deeply invasive endometriosis, are considered the precursor lesion for ovarian clear-cell carcinoma (OCCC). Methods: To explore this transcriptomic landscape, OCCC from women with pathology-proven concurrent endometriosis (n = 4) were compared to benign endometriomas (n = 4) by bulk RNA and small-RNA sequencing. Results: Analysis of protein-coding genes identified 2449 upregulated and 3131 downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|) in OCCC with concurrent endometriosis compared to endometriomas. Gene set enrichment analysis showed upregulation of pathways involved in cell cycle regulation and DNA replication and downregulation of pathways involved in cytokine receptor signaling and matrisome. Comparison of pathway activation scores between the clinical samples and publicly-available datasets for OCCC cell lines revealed significant molecular similarities between OCCC with concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in OCCC with endometriosis and was significantly upregulated (NGS: log2fold change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93). MiR-10a overexpression in vitro resulted in a significant decrease in proliferation (n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA. Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2 to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target genes that were downregulated in OCCC with endometriosis were involved in receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a overexpression in vitro was correlated with decreased expression of predicted miR-10a target genes critical for proliferation, cell-cycle regulation, and cell survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)]. Discussion: These studies in OCCC suggest that miR-10a-5p is an impactful, potentially oncogenic molecule, which warrants further studies.


Asunto(s)
Adenocarcinoma de Células Claras , Endometriosis , MicroARNs , Humanos , Femenino , Endometriosis/complicaciones , Endometriosis/genética , Transcriptoma , MicroARNs/genética , Perfilación de la Expresión Génica , Adenocarcinoma de Células Claras/complicaciones , Adenocarcinoma de Células Claras/genética , Proteínas de Unión al GTP rap
5.
Int J Immunopathol Pharmacol ; 36: 3946320221105134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35649742

RESUMEN

Objectives: To investigate the underlying mechanisms of how the basic fibroblast growth factor monoclonal antibody (bFGFmAb) attenuates cisplatin (DDP) resistance in lung cancer using A549 cells and cisplatin-resistant A549 cells (A549/DDP). Methods: Cancer cell proliferation, cell viability, and 50% inhibitory concentration (IC50) of cisplatin were assessed. Transwell assays were utilized to evaluate the invasion activity of tumor cells in response to treatment. Epithelial-to-mesenchymal transition markers and drug resistance proteins were analysed using Western blots. Results: We demonstrate that the bFGFmAb inhibits the proliferation and invasion of both A549 and A549/DDP cells. The bFGFmAb increases cisplatin sensitivity of both A549 and A549/DDP cells as evidenced by an increase in the IC50 of cisplatin in A549 and A549/DDP cells. Furthermore, bFGFmAb significantly increases the expression of E-cadherin, whilst decreasing the expression of N-cadherin and bFGF in both cell lines, thereby showing inhibition of epithelial-to-mesenchymal transition. In addition, we demonstrate that bFGFmAb significantly reduces the expression of the lung resistance protein. Conclusions: Our data suggests that the humanized bFGFmAb is a promising agent to attenuate cisplatin resistance in NSCLC. The underlying mechanism for this effect of bFGFmAb may be associated with the inhibition of epithelial-to-mesenchymal transition and reduced expression of lung resistance protein.


Asunto(s)
Cisplatino , Neoplasias Pulmonares , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Humanos , Neoplasias Pulmonares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...