Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808936

RESUMEN

A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles-equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization-carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.

2.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371383

RESUMEN

Autonomous vehicles are at the forefront of interest due to the expectations of changing transportation for the better. In order to make better decisions on the road, vehicles use information from various sources: their own sensors, messages arriving from surrounding vehicles and objects, as well as from centralized entities-including their own Digital Twin. Certain decisions require the information to arrive with low latency and some of this information (such as video) requires broadband communication. Furthermore, the vehicles can populate an area, so they can represent mass communication endpoints that still need low latency and massive broadband. The mobility of the vehicles obviously requires the complete coverage of the roads with reliable wireless communication technologies fulfilling the previously mentioned needs. The fifth generation of cellular mobile technologies, 5G, addresses these requirements. The current paper presents real-life scenarios-on the M86 highway and the ZalaZONE proving ground in Hungary-for the demonstration of vehicular communication with 5G support, where the cars exchange sensor and control information with each other, their environment, and their Digital Twins. The demonstrations were carried out through the Scenario-in-the-Loop (SciL) methodology, where some of the actionable triggers were not physically present around the vehicles, but sensed or simulated around their Digital Twin. The measurements around the demonstrations aim to reveal the feasibility of the 5G Non-Standalone Architecture for certain communication scenarios, and they mainly aim to reveal the current latency and throughput limitations under real-life conditions.

3.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033076

RESUMEN

Industrial IoT has special communication requirements, including high reliability, low latency, flexibility, and security. These are instinctively provided by the 5G mobile technology, making it a successful candidate for supporting Industrial IoT (IIoT) scenarios. The aim of this paper is to identify current research challenges and solutions in relation to 5G-enabled Industrial IoT, based on the initial requirements and promises of both domains. The methodology of the paper follows the steps of surveying state-of-the art, comparing results to identify further challenges, and drawing conclusions as lessons learned for each research domain. These areas include IIoT applications and their requirements; mobile edge cloud; back-end performance tuning; network function virtualization; and security, blockchains for IIoT, Artificial Intelligence support for 5G, and private campus networks. Beside surveying the current challenges and solutions, the paper aims to provide meaningful comparisons for each of these areas (in relation to 5G-enabled IIoT) to draw conclusions on current research gaps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA