Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074178

RESUMEN

Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we used CRISPR/Cas9 to generate loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that two closely related PP2C phosphatases, Pic3 (PP2C immunity-associated candidate 3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and two independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense related genes. RG-pic3/RG-pic12 double mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.

2.
Plant J ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032095

RESUMEN

Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv. tomato (Pst) and activate a MAPK cascade and other responses which together confer resistance to bacterial speck disease. Pic14 encodes a PP2C with an N-terminal kinase-interacting motif (KIM) and a C-terminal phosphatase domain. Upon inoculation with Pst-AvrPto, Pto/Prf-expressing tomato plants with loss-of-function mutations in Pic14 developed less speck disease, specifically in older leaves, compared to wild-type plants. Transient expression of Pic14 in leaves of Nicotiana benthamiana and tomato inhibited cell death typically induced by Pto/Prf and the MAPK cascade members M3Kα and Mkk2. The cell death-suppressing activity of Pic14 was dependent on the KIM and the catalytic phosphatase domain. Pic14 inhibited M3Kα- and Mkk2-mediated activation of immunity-associated MAPKs and Pic14 was shown to be an active phosphatase that physically interacts with and dephosphorylates Mkk2 in a KIM-dependent manner. Together, our results reveal Pic14 as an important negative regulator of Pto/Prf-triggered immunity by interacting with and dephosphorylating Mkk2.

3.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-36919057

RESUMEN

Plant cells detect potential pathogens through plasma membrane-localized pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) and activate pattern-triggered immunity (PTI). PRR-mediated MAMP perception is linked to PTI signaling by receptor-like cytoplasmic kinases (RLCKs). In tomato, Flagellin-sensing 2 (Fls2)/Fls3 interacting RLCK 1 (Fir1) is involved in PTI triggered by flagellin perception. Fir1 is necessary for regulation of jasmonic acid (JA) signaling and is involved in pre-invasion immunity. We show that Fir1 physically interacts with JASMONATE-ZIM-DOMAIN PROTEIN 3 (JAZ3), a negative regulator of JA signaling. This finding suggests that Fir1 modulates JA signaling by regulating JAZ3.

4.
Plant Physiol ; 192(1): 565-581, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36511947

RESUMEN

Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Flagelina/metabolismo , Enfermedades de las Plantas/microbiología , Péptidos/metabolismo , Transducción de Señal/fisiología , Pseudomonas syringae/fisiología , Inmunidad de la Planta/genética , Regulación de la Expresión Génica de las Plantas
5.
Mol Plant Microbe Interact ; 35(9): 737-747, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35696659

RESUMEN

The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Inmunidad de la Planta , Plantas/genética , Proteínas Quinasas/genética
6.
Mol Plant Pathol ; 22(7): 786-799, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955635

RESUMEN

Pattern-triggered immunity (PTI) is typically initiated in plants by recognition of pathogen- or damage-associated molecular patterns (PAMP/DAMPs) by cell surface-localized pattern recognition receptors (PRRs). Here, we investigated the role in PTI of Arabidopsis thaliana brassinosteroid-signalling kinases 7 and 8 (BSK7 and BSK8), which are members of the receptor-like cytoplasmic kinase subfamily XII. BSK7 and BSK8 localized to the plant cell periphery and interacted in yeast and in planta with FLS2, but not with other PRRs. Consistent with a role in FLS2 signalling, bsk7 and bsk8 single and bsk7,8 double mutant plants were impaired in several immune responses induced by flg22, but not by other PAMP/DAMPs. These included resistance to Pseudomonas syringae and Botrytis cinerea, reactive oxygen species accumulation, callose deposition at the cell wall, and expression of the defence-related gene PR1, but not activation of MAP kinases and expression of the FRK1 and WRKY29 genes. bsk7, bsk8, and bsk7,8 plants also displayed enhanced susceptibility to P. syringae and B. cinerea. Finally, BSK7 and BSK8 variants mutated in their myristoylation site or in the ATP-binding site failed to complement defective phenotypes of the corresponding mutants, suggesting that localization to the cell periphery and kinase activity are critical for BSK7 and BSK8 functions. Together, these findings demonstrate that BSK7 and BSK8 play a role in PTI initiated by recognition of flg22 by interacting with the FLS2 immune receptor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Botrytis/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/fisiología , Arabidopsis/enzimología , Arabidopsis/microbiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Membrana Celular/metabolismo , Glucanos/metabolismo , Mutación con Pérdida de Función , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores de Reconocimiento de Patrones , Transducción de Señal
7.
Mol Plant Microbe Interact ; 31(12): 1301-1311, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29947282

RESUMEN

The 14-3-3 phospho-binding proteins with scaffolding activity play central roles in the regulation of enzymes and signaling complexes in eukaryotes. In plants, 14-3-3 isoforms are required for disease resistance and key targets of pathogen effectors. Here, we examined the requirement of the tomato (Solanum lycopersicum) 14-3-3 isoform (TFT) protein family for Xv3 disease resistance in response to the bacterial pathogen Xanthomonas euvesicatoria. In addition, we determined whether TFT proteins interact with the repertoire of X. euvesicatoria type III secretion effector proteins, including AvrXv3, the elicitor of Xv3 resistance. We show that multiple TFT contribute to Xv3 resistance. We also show that one or more TFT proteins physically interact with multiple effectors (AvrXv3, XopE1, XopE2, XopN, XopO, XopQ, and XopAU). Genetic analyses indicate that none of the identified effectors interfere with AvrXv3-elicited resistance into Xv3 tomato leaves; however, XopE1, XopE2, and XopO are required to suppress symptom development in susceptible tomato leaves. Phospho-peptide mapping revealed that XopE2 is phosphorylated at multiple residues in planta and residues T66, T131, and S334 are required for maximal binding to TFT10. Together, our data support the hypothesis that multiple TFT proteins are involved in immune signaling during X. euvesicatoria infection.


Asunto(s)
Proteínas 14-3-3/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Solanum lycopersicum/inmunología , Xanthomonas/fisiología , Proteínas 14-3-3/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Xanthomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...