Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37836776

RESUMEN

Highly porous membranes based on polyvinylidene fluoride (PVDF) with the addition of nanoscale particles of non-magnetic and magnetic iron oxides were synthesized using a combined method of non-solvent induced phase separation (NIPS) and thermo-induced phase separation (TIPS) based on the technique developed by Dr. Blade. The obtained membranes were characterized using SEM, EDS, XRD, IR, diffuse reflectance spectroscopy, and fluorescent microscopy. It was shown that the membranes possessed a high fraction of electroactive phase, which increased up to a maximum of 96% with the addition of 2 wt% of α-Fe2O3 and α/γ-Fe2O3 nanoparticles. It was demonstrated that doping PVDF with nanoparticles contributed to the reduction of pore size in the membrane. All membranes exhibited piezocatalytic activity in the degradation of Rhodamine B. The degree of degradation increased from 69% when using pure PVDF membrane to 90% when using the composite membrane. The nature of the additive did not affect the piezocatalytic activity. It was determined that the main reactive species responsible for the degradation of Rhodamine B were •OH and •O2-. It was also shown that under piezocatalytic conditions, composite membranes generated a piezopotential of approximately 2.5 V.

2.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296621

RESUMEN

This paper presents the results of the synthesis of samarium-doped bismuth ferrite (BFO) nanoparticles by the solution combustion method. The dependence of BFO properties on the amount of the samarium (Sm) in the composition was studied. The synthesized nanocomposites were characterized by scanning electron microscopy SEM), X-ray diffractometry (XRD), Raman, Electron Diffuse Reflectance Spectroscopy (EDRS) and Electron Magnetic Resonance (EMR). The photocatalytic (PC) measurements showed the absence of a strict correlation between the PC activity and the crystallite size and band gap. An increase in the PC activity of BFO samples with 10 and 15% doping was observed and it was concluded that in controlling the PC properties in doped BFO, the processes of interfacial polarization at the boundaries of the morphotropic phase transition are of decisive importance. It was supposed that the internal electric field formed at these boundaries contributes to the efficient separation of photogenerated charge carriers.

3.
Polymers (Basel) ; 13(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34301064

RESUMEN

The article presents the results of the preparation and study of a gel-polymer electrolyte based on lignin obtained from Pinus sylvestris. Sulfonation and subsequent chlorination of lignin make possible implementation of the principle of mono-ionic conductivity in a natural biopolymer matrix, which provides predominantly cationic conductivity of the electrolyte. Based on the results of the qualitative and quantitative analysis of the synthesized samples, the mechanisms of the chemical conversion of the biopolymer, the structure models of the converted fragments of macromolecules, as well as the quantum-chemical calculation of their electronic and geometric parameters are presented. The key electronic characteristics of the gel polymer electrolytes (GPE) based on a composite of lignins with 20 wt.% polyvinyl alcohol are determined by impedance spectroscopy. The maximum value of the specific volume conductivity is 2.48 × 10-4 S cm-1, which is comparable with most commercial electrolytes of this type, but at the same time, record values are reached in the number of lithium cation transfer tLi+ of 0.89. The studies allow to identify the basic laws of the effect of chemical modification on the structure of GPE and describe the mechanism of ionic conductivity.

4.
Materials (Basel) ; 14(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925841

RESUMEN

The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...