Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 36(8): 1858-1881.e23, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38959897

RESUMEN

A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.


Asunto(s)
Envejecimiento , Cromatina , Factor de Transcripción AP-1 , Animales , Envejecimiento/genética , Envejecimiento/metabolismo , Factor de Transcripción AP-1/metabolismo , Cromatina/metabolismo , Ratones , Humanos , Ratones Endogámicos C57BL , Sitios de Unión
2.
Elife ; 122023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289634

RESUMEN

Staphylococcus aureus infections are associated with high mortality rates. Often considered an extracellular pathogen, S. aureus can persist and replicate within host cells, evading immune responses, and causing host cell death. Classical methods for assessing S. aureus cytotoxicity are limited by testing culture supernatants and endpoint measurements that do not capture the phenotypic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we have developed a platform called InToxSa (intracellular toxicity of S. aureus) to quantify intracellular cytotoxic S. aureus phenotypes. Studying a panel of 387 S. aureus bacteraemia isolates, and combined with comparative, statistical, and functional genomics, our platform identified mutations in S. aureus clinical isolates that reduced bacterial cytotoxicity and promoted intracellular persistence. In addition to numerous convergent mutations in the Agr quorum sensing system, our approach detected mutations in other loci that also impacted cytotoxicity and intracellular persistence. We discovered that clinical mutations in ausA, encoding the aureusimine non-ribosomal peptide synthetase, reduced S. aureus cytotoxicity, and increased intracellular persistence. InToxSa is a versatile, high-throughput cell-based phenomics platform and we showcase its utility by identifying clinically relevant S. aureus pathoadaptive mutations that promote intracellular residency.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Infecciones Estafilocócicas/microbiología , Bacteriemia/microbiología , Mutación , Línea Celular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Cell Microbiol ; 23(5): e13317, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550697

RESUMEN

Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.


Asunto(s)
Apoptosis , Interacciones Huésped-Patógeno , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Animales , Epitelio/microbiología , Ferroptosis , Humanos , Necroptosis , Neutrófilos/fisiología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Piroptosis , Staphylococcus aureus/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...