Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 20015, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26843066

RESUMEN

Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H(+), thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture.


Asunto(s)
Materiales Biocompatibles/química , Grafito/química , Yodo/química , Nanocompuestos/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/efectos de los fármacos , Humanos , Interleucina-8/análisis , Klebsiella pneumoniae/efectos de los fármacos , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Pseudomonas aeruginosa/efectos de los fármacos , Espectrofotometría Ultravioleta , Espectrometría Raman , Staphylococcus aureus/efectos de los fármacos
2.
Nanoscale ; 7(16): 6999-7021, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25807279

RESUMEN

Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

3.
ACS Appl Mater Interfaces ; 6(4): 2450-8, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24495203

RESUMEN

Chemical growth of mixed cobalt-nickel hydroxides (CoxNi1-x(OH)2), decorated on graphene foam (GF) with desirable three-dimensional (3D) interconnected porous structure as electrode and its potential energy storage application is discussed. The nanostructured CoxNi1-x(OH)2 films with different Ni:Co (x) compositions on GF are prepared by using the chemical bath deposition (CBD) method. The structural studies (X-ray diffraction and X-ray photoelectron spectroscopy) of electrodes confirm crystalline nature of CoxNi1-x(OH)2/GF and crystal structure consists of Ni(OH)2 and Co(OH)2. The morphological properties reveal that nanorods of Co(OH)2 reduce in size with increases in nickel content and are converted into Ni(OH)2 nanoparticles. The electrochemical performance reveals that the Co0.66Ni0.33(OH)2/GF electrode has maximum specific capacitance of ∼1847 F g(-1) in 1 M KOH within a potential window 0 to 0.5 V vs Ag/AgCl at a discharge current density of 5 A g(-1). The superior pseudoelectrochemical properties of cobalt and nickel are combined and synergistically reinforced with high surface area offered by a conducting, porous 3D graphene framework, which stimulates effective utilization of redox characteristics and communally improves electrochemical performance with charge transport and storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...