Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38674665

RESUMEN

Avocado is one of the most in-demand fruits worldwide and the trend towards its sustainable production, regulated by international standards, is increasing. One of the most economically important diseases is root rot, caused by Phythopthora cinnamomi. Regarding this problem, antagonistic microorganism use is an interesting alternative due to their phytopathogen control efficiency. Therefore, the interaction of arbuscular mycorrhizal fungi of the phylum Glomeromycota, native to the Peruvian coast (GWI) and jungle (GFI), and avocado rhizospheric bacteria, Bacillus subtilis and Pseudomonas putida, was evaluated in terms of their biocontrol capacity against P. cinnamomi in the "Zutano" variety of avocado plants. The results showed that the GWI and Bacillus subtilis combination increased the root exploration surface by 466.36%. P. putida increased aerial biomass by 360.44% and B. subtilis increased root biomass by 433.85%. Likewise, P. putida rhizobacteria showed the highest nitrogen (24.60 mg ∙ g-1 DM) and sulfur (2.60 mg ∙ g-1 DM) concentrations at a foliar level. The combination of GWI and Bacillus subtilis was the treatment that presented the highest calcium (16.00 mg ∙ g-1 DM) and magnesium (8.80 mg ∙ g-1 DM) concentrations. The microorganisms' multifunctionality reduced disease severity by 85 to 90% due to the interaction between mycorrhizae and rhizobacteria. In conclusion, the use of growth promoting microorganisms that are antagonistic to P. cinnamomi represents a potential strategy for sustainable management of avocado cultivation.

2.
J Fungi (Basel) ; 9(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36836347

RESUMEN

In Peru, almost 50% of the national agricultural products come from the coast, highlighting the production of avocado. Much of this area has saline soils. Beneficial microorganisms can favorably contribute to mitigating the effect of salinity on crops. Two trials were carried out with var. Zutano to evaluate the role of native rhizobacteria and two Glomeromycota fungi, one from a fallow (GFI) and the other from a saline soil (GWI), in mitigating salinity in avocado: (i) the effect of plant growth promoting rhizobacteria, and (ii) the effect of inoculation with mycorrhizal fungi on salt stress tolerance. Rhizobacteria P. plecoglissicida, and B. subtilis contributed to decrease the accumulation of chlorine, potassium and sodium in roots, compared to the uninoculated control, while contributing to the accumulation of potassium in the leaves. Mycorrhizae increased the accumulation of sodium, potassium, and chlorine ions in the leaves at a low saline level. GWI decreased the accumulation of sodium in the leaves compared to the control (1.5 g NaCl without mycorrhizae) and was more efficient than GFI in increasing the accumulation of potassium in leaves and reducing chlorine root accumulation. The beneficial microorganisms tested are promising in the mitigation of salt stress in avocado.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA