Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Med ; 23(8): 929-937, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714990

RESUMEN

The principles that govern the evolution of tumors exposed to targeted therapy are poorly understood. Here we modeled the selection and propagation of an amplification in the BRAF oncogene (BRAFamp) in patient-derived tumor xenografts (PDXs) that were treated with a direct inhibitor of the kinase ERK, either alone or in combination with other ERK signaling inhibitors. Single-cell sequencing and multiplex fluorescence in situ hybridization analyses mapped the emergence of extra-chromosomal amplification in parallel evolutionary trajectories that arose in the same tumor shortly after treatment. The evolutionary selection of BRAFamp was determined by the fitness threshold, the barrier that subclonal populations need to overcome to regain fitness in the presence of therapy. This differed for inhibitors of ERK signaling, suggesting that sequential monotherapy is ineffective and selects for a progressively higher BRAF copy number. Concurrent targeting of the RAF, MEK and ERK kinases, however, imposed a sufficiently high fitness threshold to prevent the propagation of subclones with high-level BRAFamp. When administered on an intermittent schedule, this treatment inhibited tumor growth in 11/11 PDXs of lung cancer or melanoma without apparent toxicity in mice. Thus, gene amplification can be acquired and expanded through parallel evolution, enabling tumors to adapt while maintaining their intratumoral heterogeneity. Treatments that impose the highest fitness threshold will likely prevent the evolution of resistance-causing alterations and, thus, merit testing in patients.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Adulto , Anciano , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/administración & dosificación , Carboplatino/administración & dosificación , Cisplatino/administración & dosificación , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Masculino , Melanoma/genética , Melanoma/secundario , Ratones , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Pemetrexed/administración & dosificación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Análisis de la Célula Individual , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/antagonistas & inhibidores
3.
Science ; 351(6273): 604-8, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26841430

RESUMEN

It is thought that KRAS oncoproteins are constitutively active because their guanosine triphosphatase (GTPase) activity is disabled. Consequently, drugs targeting the inactive or guanosine 5'-diphosphate-bound conformation are not expected to be effective. We describe a mechanism that enables such drugs to inhibit KRAS(G12C) signaling and cancer cell growth. Inhibition requires intact GTPase activity and occurs because drug-bound KRAS(G12C) is insusceptible to nucleotide exchange factors and thus trapped in its inactive state. Indeed, mutants completely lacking GTPase activity and those promoting exchange reduced the potency of the drug. Suppressing nucleotide exchange activity downstream of various tyrosine kinases enhanced KRAS(G12C) inhibition, whereas its potentiation had the opposite effect. These findings reveal that KRAS(G12C) undergoes nucleotide cycling in cancer cells and provide a basis for developing effective therapies to treat KRAS(G12C)-driven cancers.


Asunto(s)
Adenocarcinoma/enzimología , Antineoplásicos/farmacología , Azetidinas/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares/enzimología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Alelos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Azetidinas/química , Azetidinas/uso terapéutico , Línea Celular Tumoral , Cisteína/genética , Citidina Difosfato/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Glicina/genética , Guanosina Trifosfato/química , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Terapia Molecular Dirigida , Mutación , Piperazinas/química , Piperazinas/uso terapéutico , Conformación Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/química , Factores de Tiempo
4.
Cancer Cell ; 25(5): 697-710, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24746704

RESUMEN

MEK inhibitors are clinically active in BRAF(V600E) melanomas but only marginally so in KRAS mutant tumors. Here, we found that MEK inhibitors suppress ERK signaling more potently in BRAF(V600E), than in KRAS mutant tumors. To understand this, we performed an RNAi screen in a KRAS mutant model and found that CRAF knockdown enhanced MEK inhibition. MEK activated by CRAF was less susceptible to MEK inhibitors than when activated by BRAF(V600E). MEK inhibitors induced RAF-MEK complexes in KRAS mutant models, and disrupting such complexes enhanced inhibition of CRAF-dependent ERK signaling. Newer MEK inhibitors target MEK catalytic activity and also impair its reactivation by CRAF, either by disrupting RAF-MEK complexes or by interacting with Ser 222 to prevent MEK phosphorylation by RAF.


Asunto(s)
Resistencia a Antineoplásicos/genética , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Melanoma/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Factor 3 Asociado a Receptor de TNF/genética , Proteínas ras/genética , Animales , Benzamidas/farmacología , Línea Celular , Cumarinas/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Indoles/farmacología , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/genética , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras) , Piridonas/farmacología , Pirimidinonas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Sulfonamidas/farmacología , Resonancia por Plasmón de Superficie , Factor 3 Asociado a Receptor de TNF/metabolismo , Vemurafenib , Quinasas raf/metabolismo
5.
Arch Neurol ; 69(8): 978-83, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22490322

RESUMEN

Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.


Asunto(s)
Heterogeneidad Genética , Ubiquinona/análogos & derivados , Animales , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/terapia , Estudios de Cohortes , Humanos , Ubiquinona/biosíntesis , Ubiquinona/deficiencia , Ubiquinona/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...