Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659767

RESUMEN

Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular ß-amyloid (Aß) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aß, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aß, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aß deposits. At sites of microhemorrhage, Aß was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aß deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by ß-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aß deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.

2.
Nat Commun ; 14(1): 8220, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086820

RESUMEN

We report the case of a 79-year-old woman with Alzheimer's disease who participated in a Phase III randomized controlled trial called CLARITY-AD testing the experimental drug lecanemab. She was randomized to the placebo group and subsequently enrolled in an open-label extension which guaranteed she received the active drug. After the third biweekly infusion, she suffered a seizure characterized by speech arrest and a generalized convulsion. Magnetic resonance imaging revealed she had multifocal swelling and a marked increase in the number of cerebral microhemorrhages. She was treated with an antiepileptic regimen and high-dose intravenous corticosteroids but continued to worsen and died after 5 days. Post-mortem MRI confirmed extensive microhemorrhages in the temporal, parietal and occipital lobes. The autopsy confirmed the presence of two copies of APOE4, a gene associated with a higher risk of Alzheimer's disease, and neuropathological features of moderate severity Alzheimer's disease and severe cerebral amyloid angiopathy with perivascular lymphocytic infiltrates, reactive macrophages and fibrinoid degeneration of vessel walls. There were deposits of ß-amyloid in meningeal vessels and penetrating arterioles with numerous microaneurysms. We conclude that the patient likely died as a result of severe cerebral amyloid-related inflammation.


Asunto(s)
Enfermedad de Alzheimer , Arteritis , Angiopatía Amiloide Cerebral , Vasculitis del Sistema Nervioso Central , Anciano , Femenino , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/patología , Enfermedad Iatrogénica , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Cereb Circ Cogn Behav ; 5: 100171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457664

RESUMEN

Alzheimer's disease is the commonest form of dementia. It is likely that a lack of clearance of amyloid beta (Aß) results in its accumulation in the parenchyma as Aß oligomers and insoluble plaques, and within the walls of blood vessels as cerebral amyloid angiopathy (CAA). The drainage of Aß along the basement membranes of blood vessels as intramural periarterial drainage (IPAD), could be improved if the driving force behind IPAD could be augmented, therefore reducing Aß accumulation. There are alterations in the composition of the vascular basement membrane in Alzheimer's disease. Lysyl oxidase (LOX) is an enzyme involved in the remodelling of the extracellular matrix and its expression and function is altered in various disease states. The expression of LOX is increased in Alzheimer's disease, but it is unclear whether this is a contributory factor in the impairment of IPAD in Alzheimer's disease. The pharmacological inhibition of LOX may be a strategy to improve IPAD and reduce the accumulation of Aß in the parenchyma and within the walls of blood vessels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...