Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 13679, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871757

RESUMEN

This study introduces a novel approach in the realm of liquid biopsies, employing a 3D Mueller-matrix (MM) image reconstruction technique to analyze dehydrated blood smear polycrystalline structures. Our research centers on exploiting the unique optical anisotropy properties of blood proteins, which undergo structural alterations at the quaternary and tertiary levels in the early stages of diseases such as cancer. These alterations manifest as distinct patterns in the polycrystalline microstructure of dried blood droplets, offering a minimally invasive yet highly effective method for early disease detection. We utilized a groundbreaking 3D MM mapping technique, integrated with digital holographic reconstruction, to perform a detailed layer-by-layer analysis of partially depolarizing dry blood smears. This method allows us to extract critical optical anisotropy parameters, enabling the differentiation of blood films from healthy individuals and prostate cancer patients. Our technique uniquely combines polarization-holographic and differential MM methodologies to spatially characterize the 3D polycrystalline structures within blood films. A key advancement in our study is the quantitative evaluation of optical anisotropy maps using statistical moments (first to fourth orders) of linear and circular birefringence and dichroism distributions. This analysis provides a comprehensive characterization of the mean, variance, skewness, and kurtosis of these distributions, crucial for identifying significant differences between healthy and cancerous samples. Our findings demonstrate an exceptional accuracy rate of over 90 % for the early diagnosis and staging of cancer, surpassing existing screening methods. This high level of precision and the non-invasive nature of our technique mark a significant advancement in the field of liquid biopsies. It holds immense potential for revolutionizing cancer diagnosis, early detection, patient stratification, and monitoring, thereby greatly enhancing patient care and treatment outcomes. In conclusion, our study contributes a pioneering technique to the liquid biopsy domain, aligning with the ongoing quest for non-invasive, reliable, and efficient diagnostic methods. It opens new avenues for cancer diagnosis and monitoring, representing a substantial leap forward in personalized medicine and oncology.


Asunto(s)
Holografía , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Anisotropía , Holografía/métodos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/diagnóstico por imagen , Biopsia Líquida/métodos
3.
J Biomed Opt ; 28(10): 102903, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37425430

RESUMEN

Significance: Mueller-matrix polarimetry is a powerful method allowing for the visualization of malformations in biological tissues and quantitative evaluation of alterations associated with the progression of various diseases. This approach, in fact, is limited in observation of spatial localization and scale-selective changes in the poly-crystalline compound of tissue samples. Aim: We aimed to improve the Mueller-matrix polarimetry approach by implementing the wavelet decomposition accompanied with the polarization-singular processing for express differential diagnosis of local changes in the poly-crystalline structure of tissue samples with various pathology. Approach: Mueller-matrix maps obtained experimentally in transmitted mode are processed utilizing a combination of a topological singular polarization approach and scale-selective wavelet analysis for quantitative assessment of the adenoma and carcinoma histological sections of the prostate tissues. Results: A relationship between the characteristic values of the Mueller-matrix elements and singular states of linear and circular polarization is established within the framework of the phase anisotropy phenomenological model in terms of linear birefringence. A robust method for expedited (up to ∼15 min) polarimetric-based differential diagnosis of local variations in the poly-crystalline structure of tissue samples containing various pathology abnormalities is introduced. Conclusions: The benign and malignant states of the prostate tissue are identified and assessed quantitatively with a superior accuracy provided by the developed Mueller-matrix polarimetry approach.


Asunto(s)
Neoplasias , Masculino , Humanos , Birrefringencia , Anisotropía , Análisis Espectral , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA