Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neuroendocrinol ; 64: 100953, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757094

RESUMEN

Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system. To clarify the sensitivity and reactivity of the GnIH system in response to stress, we summarize and critically review the available studies that investigated the effects of various stressors, such as restraint, nutritional/metabolic and social stress, on GnIH expression and/or its neuronal activity leading to altered HPG action. In this review, we focus on GnIH as the potential novel mediator responsible for stress-induced reproductive dysfunction.


Asunto(s)
Hormonas Hipotalámicas , Neuropéptidos , Gonadotropinas/metabolismo , Hormonas Hipotalámicas/metabolismo , Hormonas Hipotalámicas/farmacología , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Reproducción/fisiología
2.
Nat Chem Biol ; 16(6): 676-685, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32231341

RESUMEN

CRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually. We conducted phenotypic screenings of circadian clock modulators, and identified KL101 and TH301 that selectively stabilize CRY1 and CRY2, respectively. Crystal structures of CRY-compound complexes revealed conservation of compound-binding sites between CRY1 and CRY2. We further discovered a unique mechanism underlying compound selectivity in which the disordered C-terminal region outside the pocket was required for the differential effects of KL101 and TH301 against CRY isoforms. By using these compounds, we found a new role of CRY1 and CRY2 as enhancers of brown adipocyte differentiation, providing the basis of CRY-mediated regulation of energy expenditure.


Asunto(s)
Criptocromos/química , Isoformas de Proteínas/química , Animales , Sitios de Unión , Relojes Circadianos , Criptocromos/genética , Fibroblastos/metabolismo , Células HEK293 , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones Noqueados , Modelos Moleculares , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/genética , Termodinámica
3.
Artículo en Inglés | MEDLINE | ID: mdl-30858828

RESUMEN

Since gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as the first hypothalamic neuropeptide that actively inhibits gonadotropin release, researches conducted for the last 18 years have demonstrated that GnIH acts as a pronounced negative regulator of reproduction. Inhibitory effect of GnIH on reproduction is mainly accomplished at hypothalamic-pituitary levels; gonadotropin-releasing hormone (GnRH) neurons and gonadotropes are major targets of GnIH action based on the morphological interaction with GnIH neuronal fibers and the distribution of GnIH receptor. Here, we review molecular studies mainly focusing on the signal transduction pathway of GnIH in target cells, GnRH neurons, and gonadotropes. The use of well-defined cellular model systems allows the mechanistic study of signaling pathway occurring in target cells by demonstrating the direct cause-and-effect relationship. The insights gained through studying molecular mechanism of GnIH action contribute to deeper understanding of the mechanism of how GnIH communicates with other neuronal signaling systems to control our reproductive function. Reproductive axis closely interacts with other endocrine systems, thus GnIH expression levels would be changed by adrenal and thyroid status. We also briefly review molecular studies investigating the regulatory mechanisms of GnIH expression to understand the role of GnIH as a mediator between adrenal, thyroid and gonadal axes.

4.
Endocrinology ; 159(1): 62-68, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938445

RESUMEN

It is known that hypothyroidism delays puberty in mammals. Interaction between the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-gonadal (HPG) axes may be important processes in delayed puberty. Gonadotropin-inhibitory hormone (GnIH) is a newly discovered hypothalamic neuropeptide that inhibits gonadotropin synthesis and release in quail. It now appears that GnIH is conserved across various mammals and primates, including humans, and inhibits reproduction. We have further demonstrated that GnIH is involved in pubertal delay induced by thyroid dysfunction in female mice. Hypothyroidism delays pubertal onset with the increase in hypothalamic GnIH expression and the decrease in circulating gonadotropin and estradiol levels. Thyroid status regulates GnIH expression by epigenetic modification of the GnIH promoter region. Furthermore, knockout of GnIH gene abolishes the effect of hypothyroidism on delayed pubertal onset. Accordingly, it is considered that GnIH is a mediator of pubertal disorder induced by thyroid dysfunction. This is a novel function of GnIH that interacts between the HPT-HPG axes in pubertal onset delay. This mini-review summarizes the structure, expression, and function of GnIH and highlights the action of GnIH in pubertal disorder induced by thyroid dysfunction.


Asunto(s)
Gonadotropinas/antagonistas & inhibidores , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hipotiroidismo/fisiopatología , Modelos Neurológicos , Neuronas/metabolismo , Pubertad Tardía/etiología , Animales , Regulación del Desarrollo de la Expresión Génica , Gonadotropinas/metabolismo , Humanos , Hipotálamo/fisiopatología , Hipotiroidismo/metabolismo , Hipófisis/metabolismo , Hipófisis/fisiopatología , Glándula Tiroides/metabolismo , Glándula Tiroides/fisiopatología
5.
Gen Comp Endocrinol ; 264: 48-57, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754274

RESUMEN

Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Evolución Molecular , Vertebrados/metabolismo
6.
Sci Rep ; 7(1): 1042, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28432332

RESUMEN

Thyroid disorders cause abnormal puberty, indicating interactions between the hypothalamus-pituitary-thyroid (HPT) and hypothalamus-pituitary-gonadal (HPG) axes, which are important in pubertal development. The hypothalamic gonadotropin-inhibitory hormone (GnIH) was shown to be decreased in the early prepubertal stage, suggesting the role of GnIH on pubertal onset. Here, we investigated whether thyroid dysfunction affects pubertal onset in female mice via GnIH regulation. Hypothyroidism showed delayed pubertal onset with increased GnIH expression and reduced pituitary-gonadal activity. Remarkably, knockout of GnIH prevented the effect of hypothyroidism to delay the pubertal onset, resulting in indistinguishable pubertal timing in GnIH-knockout female mice between control and hypothyroidism-induced group, indicating that increased GnIH expression induced by hypothyroidism may lead to delayed puberty. In contrast, hyperthyroidism led to a decrease in GnIH expression, however pubertal onset was normal, implying further reduction of the inhibitory GnIH had little effect on the phenotypical change. Critically, thyroid hormone suppressed GnIH expression in hypothalamic explants and GnIH neurons expressed thyroid hormone receptors to convey the thyroid status. Moreover, the thyroid status highly regulated the chromatin modifications of GnIH promoter, H3acetylation and H3K9tri-methylation. These findings indicate a novel function of GnIH to mediate HPT-HPG interactions that contribute to proper pubertal development.


Asunto(s)
Gonadotropinas/metabolismo , Hipertiroidismo/complicaciones , Hipotiroidismo/complicaciones , Neuropéptidos/metabolismo , Pubertad Tardía/etiología , Animales , Femenino , Técnicas de Inactivación de Genes , Hipotálamo/efectos de los fármacos , Ratones , Neuropéptidos/genética , Hormonas Tiroideas/metabolismo
7.
FASEB J ; 30(6): 2198-210, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26929433

RESUMEN

Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7. We examined whether GnIH inhibits the action of kisspeptin and vasoactive intestinal polypeptide (VIP), positive regulators of GnRH neurons. Although GnIH significantly suppressed the stimulatory effect of kisspeptin on GnRH release in hypothalamic culture, GnIH had no inhibitory effect on kisspeptin stimulation of serum response element and nuclear factor of activated T-cell response element activities and ERK phosphorylation, indicating that GnIH may not directly inhibit kisspeptin signaling in GnRH neurons. On the contrary, GnIH effectively eliminated the stimulatory effect of VIP on p38 and ERK phosphorylation, c-Fos mRNA expression, and GnRH release. The use of pharmacological modulators strongly demonstrated the specific inhibitory action of GnIH on the adenylate cyclase/cAMP/protein kinase A pathway, suggesting a common inhibitory mechanism of GnIH action in GnRH neurons and gonadotropes.-Son, Y. L., Ubuka, T., Soga, T., Yamamoto, K., Bentley, G. E., Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/farmacología , Neuronas/efectos de los fármacos , Péptido Intestinal Vasoactivo/metabolismo , Animales , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes fos , Hipotálamo/citología , Ratones , Neuronas/fisiología , Fosforilación , Proteína Quinasa C , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Transducción de Señal , Péptido Intestinal Vasoactivo/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Gen Comp Endocrinol ; 227: 94-100, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26130238

RESUMEN

Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution.


Asunto(s)
Anguila Babosa/metabolismo , Kisspeptinas/metabolismo , Anfioxos/metabolismo , Neuropéptidos/metabolismo , Petromyzon/metabolismo , Animales , Evolución Biológica , Anguila Babosa/genética , Kisspeptinas/genética , Anfioxos/genética , Neuropéptidos/genética , Oligopéptidos/genética , Oligopéptidos/metabolismo , Petromyzon/genética , Hormona Liberadora de Prolactina/genética , Hormona Liberadora de Prolactina/metabolismo
9.
Gen Comp Endocrinol ; 227: 27-50, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26409890

RESUMEN

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.


Asunto(s)
Proteínas Aviares/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Reproducción/fisiología , Transducción de Señal/fisiología , Animales , Coturnix/metabolismo , Femenino , Gónadas/metabolismo , Masculino , Neuronas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-26635728

RESUMEN

Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of the 1970s, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in mammals and other vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. Numerous studies over the past decade and a half have demonstrated that GnIH serves as a key player regulating reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. In the latter case, recent evidence indicates that GnIH can regulate reproductive behavior through changes in neurosteroid, such as neuroestrogen, biosynthesis in the brain. This review summarizes the discovery of GnIH, and the contributions to GnIH research focused on its mode of action, regulation of biosynthesis, and how these findings advance our understanding of reproductive neuroendocrinology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA