Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L175-L189, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147795

RESUMEN

Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.


Asunto(s)
COVID-19 , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Nicotina , Glicerol , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Propilenglicol , Ácido Benzoico
2.
Front Microbiol ; 14: 1258975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033586

RESUMEN

Introduction: Both spill over and spill back of SARS-CoV-2 virus have been reported on mink farms in Europe and the United States. Zoonosis is a public health concern as dangerous mutated forms of the virus could be introduced into the human population through spillback. Methods: The purpose of our study was to determine the SARS-CoV-2 entry mechanism using the mink lung epithelial cell line (Mv1Lu) and to block entry with drug inhibitors. Results: Mv1Lu cells were susceptible to SARS-CoV-2 viral pseudoparticle infection, validating them as a suitable disease model for COVID-19. Inhibitors of TMPRSS2 and of endocytosis, two pathways of viral entry, were tested to identify those that blocked infection. TMPRSS2 inhibitors had minimal impact, which can be explained by the apparent lack of activity of this enzyme in the mink and its localization within the cell, not on the cell surface. Discussion: Dyngo4a, a small molecule endocytosis inhibitor, significantly reduced infection, supporting the conclusion that the entry of the SARS-CoV-2 virus into Mv1Lu cells occurs primarily through endocytosis. The small molecule inhibitors that were effective in this study could potentially be used therapeutically to prevent SARS-CoV-2 infection in mink populations. This study will facilitate the development of therapeutics to prevent zoonotic transmission of SARS-CoV-2 variants to other animals, including humans.

3.
Sci Rep ; 13(1): 5807, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037851

RESUMEN

The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Few studies have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Responses of BEAS-2B cells to JUUL aerosols or their individual constituents were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex system, which produces authentic heated EC aerosols. In general, nicotine and nicotine + propylene glycol/vegetable glycerin aerosols increased ACE2 (angiotensin converting enzyme 2) levels, the SARS-CoV-2 receptor; and increased the activity of TMPRSS2 (transmembrane serine protease 2), an enzyme essential for viral entry. Lentivirus pseudoparticles with spike protein were used to test viral penetration. Exposure to nicotine, EC fluids, or aerosols altered the infection machinery and increased viral entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. While both nicotine and JUUL aerosols increased SARS-CoV-2 infection, JUUL significantly decreased the effect of nicotine alone. These data support the idea that vaping can increase the likelihood of contracting COVID-19 and that e-liquid composition may modulate this effect.


Asunto(s)
COVID-19 , Sistemas Electrónicos de Liberación de Nicotina , Humanos , Nicotina/farmacología , Nicotina/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Células Epiteliales/metabolismo
4.
Curr Protoc ; 3(4): e759, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37098759

RESUMEN

Mother-to-fetus transmission of the SARS-CoV-2 virus via the placenta has been reported but cannot readily be studied in pregnant women. This protocol describes an in vitro method to investigate SARS-CoV-2 infection of human embryonic stem cells (hESCs), which are similar to epiblast cells in young postimplantation embryos. First, SARS-CoV-2 viral pseudoparticles, which contain the spike protein and a fluorescent reporter, are incorporated into a lentivirus backbone that is expanded in HEK 293T cells. Then, an infection assay based on hESCs is used with the viral pseudoparticles. An application of the infection assay in therapeutic drug screening is provided. This protocol allows infection of hESCs by SARS-CoV-2 pseudoparticles to be studied in vitro and can be used in conjunction with other assays to understand and potentially prevent infection. hESCs could also be differentiated to study infection in the three germ layers and their fetal cell derivatives. This disease-in-a-dish model could be readily applied to other hESC lines, and to other viral infections, that affect human prenatal development. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparing HEK 293T cells for lentiviral vector transfection Support Protocol 1: Visual inspection of transfected HEK 293T cells Basic Protocol 2: Generating viral pseudoparticles Support Protocol 2: Determining viral titer with HEK 293T-ACE2 cells Basic Protocol 3: Plating hESCs for the infection assay Support Protocol 3: Evaluating transduction efficiency.


Asunto(s)
COVID-19 , Femenino , Humanos , Embarazo , SARS-CoV-2 , Lentivirus/genética , Transfección , Diferenciación Celular
5.
bioRxiv ; 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36052374

RESUMEN

Background: The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Most studies have been done with tobacco cigarettes, while few have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with high concentrations of nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Methods: Responses of BEAS-2B cells to authentic JUUL™ aerosols or their individual constituents (propylene glycol (PG)/vegetable glycerin (VG) and nicotine) were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex® system, which produces authentic heated EC aerosols. SARS-CoV-2 infection machinery was assessed using immunohistochemistry and Western blotting. Specifically, the levels of the SARS-CoV-2 receptor ACE2 (angiotensin converting enzyme 2) and a spike modifying enzyme, TMPRSS2 (transmembrane serine protease 2), were evaluated. Following each exposure, lentivirus pseudoparticles with spike protein and a green-fluorescent reporter were used to test viral penetration and the susceptibility of BEAS-2B cells to infection. Results: Nicotine, EC fluids, and authentic JUUL™ aerosols increased both ACE2 levels and TMPRSS2 activity, which in turn increased viral particle entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. In the Cultex system, PG/VG, PG/VG/nicotine, and JUUL™ aerosols significantly increased infection above clean air controls. However, both the PG/VG and JUUL™ treatments were significantly lower than nicotine/PG/VG. PG/VG increased infection only in the Cultex® system, which produces heated aerosol. Conclusion: Our data are consistent with the conclusion that authentic JUUL™ aerosols or their individual constituents (nicotine or PG/VG) increase SARS-CoV-2 infection. The strong effect produced by nicotine was modulated in authentic JUUL aerosols, demonstrating the importance of studying mixtures and aerosols from actual EC products. These data support the idea that vaping increases the likelihood of contracting COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...