Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(43): 28848-28858, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34746577

RESUMEN

Bio-based polyurethane (PU) has recently drawn our attention due to the increasing interest in sustainability and the risks involved with petroleum depletion. Herein, bio-based self-healing PU with a novel polyol, i.e., eugenol glycol dimer (EGD), was synthesized and characterized for the first time. EGD was designed to have pairs of primary, secondary, and aromatic alcohols, which all are able to be involved in urethane bond formation and to show self-healing and antioxidant effects. EGD was incorporated into a mixture of the prepolymer of polyol (tetramethylene ether glycol) and 4,4'-methylene diphenyl diisocyanate to synthesize PU. EGD-PU showed excellent self-healing properties (99.84%), and it maintained its high self-healing property (84.71%) even after three repeated tests. This dramatic self-healing was induced through transcarbamoylation by the pendant hydroxyl groups of EGD-PU. The excellent antioxidant effect of EGD-PU was confirmed by 2,2-diphenyl-1-picrylhydrazyl analysis. Eugenol-based EGD is a promising polyol chain extender that is required in the production of bio-based, self-healing, and recyclable polyurethane; therefore, EGD-PU can be applied to bio-based self-healable films or coating materials as a substitute for petroleum-based PU.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA