Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Expert Opin Drug Saf ; : 1-8, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132853

RESUMEN

BACKGROUND: To investigate the pharmacovigilance (PV) and make pairwise comparisons on reporting proportion, seriousness, and severity of outcomes of major adverse cardiovascular events (MACE) among poly(ADP-ribose) polymerase-inhibitors (PARPis) in treating ovarian cancer, fallopian tube carcinoma, and primary peritoneal cancer (collectively named EOC) from the US Food and Drug Administration Adverse Event Reporting System (FAERS). RESEARCH DESIGN AND METHODS: Data on adverse cardiovascular events reports related to EOC treatment submitted to FAERS from the first quarter of 2015 to the second quarter of 2023 were harvested. Three PARPis were identified: olaparib, niraparib, and rucaparib. RESULTS: Eventually, a total of 258,596 eligible records were enrolled with 12,331 reports including 5,292 reports of MACE and 7,039 reports of other cardiovascular events. For the primary composite endpoint, a PV signal associated with MACE was detected in niraparib (ROR = 1.12; IC025 = 0.03), whereas it was not detected in olaparib and rucaparib; For the secondary endpoint, PV signals associated with other cardiovascular events were detected in niraparib (ROR = 1.17;IC025 = 0.04), but not in olaparib and rucaparib. CONCLUSIONS: For EOC patients, close monitoring of blood pressure, heart rate, and coagulation function should be conducted when selecting niraparib for treatment.

2.
J Agric Food Chem ; 72(31): 17617-17625, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052973

RESUMEN

Odorant receptors (ORs) play a crucial role in insect chemoreception. Here, a female-biased odorant receptor MmedOR48 in parasitoid Microplitis mediator was fully functionally characterized. The qPCR analysis suggested that the expression level of MmedOR48 increased significantly after adult emergence and was expressed much more in the antennae. Moreover, an in situ hybridization assay showed MmedOR48 was extensively located in the olfactory sensory neurons. In two-electrode voltage clamp recordings, recombinant MmedOR48 was broadly tuned to 23 kinds of volatiles, among which five plant aldehyde volatiles excited the strongest current recording values. Subsequent molecular docking analysis coupled with site-directed mutagenesis demonstrated that key amino acid residues Thr142, Gln80, Gln282, and Thr312 together formed the binding site in the active pocket for the typical aldehyde ligands. Furthermore, ligands of MmedOR48 could stimulate electrophysiological activities in female adults of the M. mediator. The main aldehyde ligand, nonanal, aroused significant behavioral preference of M. mediator in females than in males. These findings suggest that MmedOR48 may be involved in the recognition of plant volatiles in M. mediator, which provides valuable insight into understanding the olfactory mechanisms of parasitoids.


Asunto(s)
Proteínas de Insectos , Receptores Odorantes , Compuestos Orgánicos Volátiles , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Femenino , Animales , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Masculino , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Avispas/química , Avispas/fisiología , Avispas/metabolismo , Simulación del Acoplamiento Molecular , Plantas/parasitología , Plantas/química , Plantas/metabolismo
3.
Toxicology ; 507: 153883, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996996

RESUMEN

The broad spread of micro(nano)plastics (MNPs) has garnered significant attention in recent years. MNPs have been detected in numerous human organs, indicating that they may also be hazardous to humans. The toxic effects of MNPs have been demonstrated in marine species and experimental animals. The primary pathway and target organ for MNPs entering the human body is the intestinal system, and increasing research has been done on the harmful effects and subsequent mechanisms of exposure to MNPs. Studies on how MNPs affect gut health in humans are scarce, nevertheless. Since rodents are frequently employed as animal models for human ailments, research on rodents exposed to MNPs can provide a more accurate representation of human circumstances. This study examined the effects of MNPs on intestinal microecology, inflammation, barrier function, and ion transport channels in rodents. It also reviewed the signal pathways involved, such as oxidative stress, nuclear factor (NF)-κB, Toll-like receptor (TLR) 4, inflammatory corpuscles, muscarinic acetylcholine receptors (mAChRs), mitogen-activated protein kinase (MAPK), and cell death. This review will offer a conceptual framework for the management and avoidance of associated illnesses.


Asunto(s)
Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Intestinos/efectos de los fármacos , Microplásticos/toxicidad , Humanos , Estrés Oxidativo/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Nanopartículas/toxicidad
4.
Research (Wash D C) ; 7: 0406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979514

RESUMEN

Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.

5.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731657

RESUMEN

There are a wide range of commercial infant formulae available on the market. These are made using milk from different species, such as goat, sheep, and cow. The different protein compositions of these milks and the process used during infant-formulae manufacture, such as heat treatment, may impact the digestion of nutrients. This study compared the effect of protein composition and heat treatment on the in vitro gastric digestion behaviour of commercial infant formulae made with cow, goat, and sheep milk using a dynamic infant human gastric simulator (IHGS). During the simulated dynamic gastric digestion, the goat milk infant formula (GIF) showed earlier signs of aggregate formation compared to cow milk infant formula (CIF) and sheep milk infant formula (SIF). In addition, the microstructures of GIF chyme showed fragmented and porous structures. On the contrary, CIF formed dense protein networks that trapped oil droplets, whereas SIF exhibited a microstructure of smooth oil droplets surrounded by fewer protein networks. The different aggregation behaviours and aggregate structures of the three infant-formulae chyme were related to their different protein compositions, especially the different casein compositions. Furthermore, the open fragile structure of GIF aggregates provided easier access to pepsin, allowing it to hydrolyse protein. The results from the present study provided some information to assist in understanding the coagulation and digestion behaviours of commercial infant formulae made from different species of milk.

6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 588-592, 2024 May 15.
Artículo en Chino | MEDLINE | ID: mdl-38752246

RESUMEN

Objective: To explore the feasibility and effectiveness of mixed reality technology for localizing perforator vessels in the repair of mandibular defects using free fibular flap. Methods: Between June 2020 and June 2023, 12 patients with mandibular defects were repaired with free fibular flap. There were 8 males and 4 females, with an average age of 61 years (range, 35-78 years). There were 9 cases of ameloblastomas and 3 cases of squamous cell carcinomas involving the mandible. The disease duration ranged from 15 days to 2 years (median, 14.2 months). The length of mandibular defects ranged from 5 to 14 cm (mean, 8.5 cm). The area of soft tissue defects ranged from 5 cm×4 cm to 8 cm×6 cm. Preoperative enhanced CT scans of the maxillofacial region and CT angiography of the lower limbs were performed, and the data was used to create three-dimensional models of the mandible and lower limb perforator vessels. During operation, the mixed reality technology was used to overlay the three-dimensional model of perforator vessels onto the body surface for harvesting the free fibular flap. The length of the fibula harvested ranged from 6 to 15 cm, with a mean of 9.5 cm; the size of the flap ranged from 6 cm×5 cm to 10 cm×8 cm. The donor sites were sutured directly in 7 cases and repaired with free skin grafting in 5 cases. Results: Thirty perforator vessels were located by mixed reality technology before operation, with an average of 2.5 vessels per case; the distance between the exit point of the perforator vessels located before operation and the actual exit point ranged from 1 to 4 mm, with a mean of 2.8 mm. All fibular flaps survived; 1 case had necrosis at the distal end of flap, which healed after dressing changes. One donor site had infection, which healed after anti-inflammatory dressing changes; the remaining incisions healed by first intention, and the grafts survived smoothly. All patients were followed up 8-36 months (median, 21 months). The repaired facial appearance was satisfactory, with no flap swelling. Among the patients underwent postoperative radiotherapy, 2 patients had normal bone healing and 1 had delayed healing at 6 months. Conclusion: In free fibular flap reconstruction of mandibular defects, the use of mixed reality technology for perforator vessel localization can achieve three-dimensional visualization, simplify surgical procedures, and reduce errors.


Asunto(s)
Peroné , Colgajos Tisulares Libres , Mandíbula , Humanos , Masculino , Persona de Mediana Edad , Femenino , Adulto , Colgajos Tisulares Libres/irrigación sanguínea , Anciano , Peroné/trasplante , Mandíbula/cirugía , Procedimientos de Cirugía Plástica/métodos , Carcinoma de Células Escamosas/cirugía , Neoplasias Mandibulares/cirugía , Reconstrucción Mandibular/métodos , Colgajo Perforante/irrigación sanguínea , Ameloblastoma/cirugía
8.
J Hazard Mater ; 469: 133914, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430598

RESUMEN

Persistent organic pollutants (POPs) sourced by the forest fire release are emerging as significant contributors. Despite their increasing importance, the impact of forest fires on POPs remains inadequately explored and an unclear understanding. Herein, the research, choosing four typical forest combustibles, focuses on the relationship between typical POPs and wildfire parameters by assessing the predominant compounds and their concentration in POPs emissions from such fuels through molecular-level analysis. Experiments reveal forest combustibles thermally degrade to release products, releasing a variety of products, including acids (>7.94 %), aldehydes (>2.32 %), ketones (>3.40 %), alcohols (>7.70 %), esters (>2.33 %), ethers (>4.44 %), hydrocarbons (>6.36 %), aromatic compounds (>21.40 %), and nitrogen-bearing compounds (>11.83 %); notably, aromatic compounds, containing substantial concentrations, are also recognized as POPs. By delving into the pyrolysis (20 °C·ms-1) and burning processes (25, 35 and 50 kW/m2) of forest combustibles, we can gain a comprehensive understanding of the origin of POPs in wildfires. Moreover, Pearson correlation analysis is employed to establish connections between emitting volatiles and forest fire risk, further unveiling a significant correlation between fire hazards of forest combustibles and the presence of aromatic compounds (Correlation over 0.8). These findings are crucial for comprehending the POPs in forests and evaluating forest fire hazards at the molecular level.

9.
Angew Chem Int Ed Engl ; 63(19): e202316717, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38477147

RESUMEN

The electrolytes for lithium metal batteries (LMBs) are plagued by a low Li+ transference number (T+) of conventional lithium salts and inability to form a stable solid electrolyte interphase (SEI). Here, we synthesized a self-folded lithium salt, lithium 2-[2-(2-methoxy ethoxy)ethoxy]ethanesulfonyl(trifluoromethanesulfonyl) imide (LiETFSI), and comparatively studied with its structure analogue, lithium 1,1,1-trifluoro-N-[2-[2-(2-methoxyethoxy)ethoxy)]ethyl]methanesulfonamide (LiFEA). The special anion chemistry imparts the following new characteristics: i) In both LiFEA and LiETFSI, the ethylene oxide moiety efficiently captures Li+, resulting in a self-folded structure and high T+ around 0.8. ii) For LiFEA, a Li-N bond (2.069 Å) is revealed by single crystal X-ray diffraction, indicating that the FEA anion possesses a high donor number (DN) and thus an intensive interphase "self-cleaning" function for an ultra-thin and compact SEI. iii) Starting from LiFEA, an electron-withdrawing sulfone group is introduced near the N atom. The distance of Li-N is tuned from 2.069 Šin LiFEA to 4.367 Šin LiETFSI. This alteration enhances ionic separation, achieves a more balanced DN, and tunes the self-cleaning intensity for a reinforced SEI. Consequently, the fast charging/discharging capability of LMBs is progressively improved. This rationally tuned anion chemistry reshapes the interactions among Li+, anions, and solvents, presenting new prospects for advanced LMBs.

10.
Mediators Inflamm ; 2024: 4121166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405620

RESUMEN

The macrovascular complications of diabetes cause high mortality and disability in patients with type 2 diabetes mellitus (T2DM). The inflammatory response of vascular smooth muscle cell (VSMC) runs through its pathophysiological process. Salvianolic acid B (Sal B) exhibits beneficial effects on the cardiovascular system. However, its role and mechanism in diabetic vascular inflammatory response remain unclear. In this study, we found that Sal B reduced vascular inflammation in diabetic mice and high glucose- (HG-) induced VSMC inflammation. Subsequently, we found that Sal B reduced HG-induced VSMC inflammation by downregulating FOXO1. Furthermore, miR-486a-5p expression was obviously reduced in HG-treated VSMC. Sal B attenuated HG-induced VSMC inflammation by upregulating miR-486a-5p. Loss- and gain-of-function experiments had proven that the transfection of the miR-486a-5p mimic inhibited HG-induced VSMC inflammation whereas that of the miR-486a-5p inhibitor promoted HG-induced VSMC inflammation, thereby leading to the amelioration of vascular inflammation in the diabetic mice. Furthermore, studies had shown that miR-486a-5p inhibited FOXO1 expression by directly targeting its 3'-UTR. In conclusion, Sal B alleviates the inflammatory response of VSMC by upregulating miR-486a-5p and aggravating its inhibition of FOXO1 expression. Sal B exerts a significant anti-inflammatory effect in HG-induced VSMC inflammation by modulating the miR-486a-5p/FOXO1 axis.


Asunto(s)
Benzofuranos , Depsidos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , Animales , Ratones , MicroARNs/metabolismo , Músculo Liso Vascular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Cultivadas , Inflamación/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
11.
Heliyon ; 10(3): e25405, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38352735

RESUMEN

Pneumothorax is an emergency in thoracic surgeries and respiratory medicine. A technique is warranted for real-time monitoring of pneumothorax at the bedside so that rapid diagnosis and timely intervention can be achieved. We report herein a case in which electrical impedance tomography (EIT) was employed at the bedside to monitor lung ventilation of a patient with spontaneous pneumothorax during treatment. It was found that the affected side/healthy side ventilation ratio and global inhomogeneity were strongly correlated with the severity of pneumothorax. The use of EIT allowed intuitive observation of the effect of pneumothorax on ventilation, which helped the doctors make immediate diagnosis and intervention. After timely and successful treatment, the patient was discharged. This is the first case reporting a complete therapeutic course of spontaneous pneumothorax assessed with EIT. Our case demonstrated that EIT could monitor regional ventilation loss of the affected side of pneumothorax patients at the bedside, and dynamically assess the treatment effect of pneumothorax, which provides an important imaging basis for clinical pneumothorax treatment.

12.
Arch Insect Biochem Physiol ; 115(2): e22088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349673

RESUMEN

Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.


Asunto(s)
Escarabajos , Hemiterpenos , Compuestos Organofosforados , Fosfatos de Poliisoprenilo , Sesquiterpenos , Animales , Farnesiltransferasa , Cinética , Simulación del Acoplamiento Molecular , Filogenia , Mamíferos
13.
Sci Total Environ ; 917: 170455, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286288

RESUMEN

Microplastics (100 nm-5 mm) and nanoplastics (<100 nm) collectively referred to as micro(nano)plastics (MNPs), which are emerging pollutants all over the world. Environmental differences affect its distribution. The content of MNPs differs between urban and rural environments, according to previous studies. To understand the actual situation of human exposure to MNPs in various environments, this study collected 12 urine samples from volunteers in urban and rural regions of Chongqing and used pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and laser direct infrared spectroscopy (LDIR) to detect and analyze MNPs in urine. With an average abundance of 1.50 (2.31) mg/kg, MNPs were found in 9 samples by Py-GC/MS. Polyethylene (PE), polyvinyl chloride (PVC) and polyamide 66 (PA66), three different types of MNPs were found, with PE content being the highest among them. By using LDIR, MNPs were found in 7 samples, with an average abundance of 15.17 (23.13) particles/kg. Five different types of MNPs were found, with acrylates (ACR) being the main type, followed by polymethylmethacrylate (PMMA), polyurethane (PU), polypropylene (PP), polyethylene terephthalate (PET). The findings demonstrated that urban region had much greater levels and more types of MNPs in human urine than rural. Additionally, regular contact with plastic toys and the use of personal care products are linked to the presence of MNPs. The influence of environmental factors on the actual exposure of the human body to MNPs was preliminary explored in this study, and two different methods were used for the first time to simultaneously detect and analyze MNPs in human urine. This allowed for the feasibility of comprehensively and effectively quantitatively analyzing the actual exposure of the human body to MNPs, and also provided the theoretical foundation for further research on the harm of MNPs to human health in different environments.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Plásticos , Orina , Polietileno , Acrilatos
14.
J Cell Mol Med ; 28(2): e18053, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014923

RESUMEN

Immune disorders caused by sepsis have recently drawn much attention. We sought to dynamically monitor the expression of small extracellular vesicle (sEV) miRNAs in peripheral blood during sepsis to explore these miRNAs as potential biomarkers for monitoring immune function in sepsis patients. This study included patients with sepsis. Blood samples were obtained from 10 patients on the first through 10th days, the 12th day and the 14th day since sepsis onset, resulting in 120 collected samples. Serum sEVs were extracted from peripheral venous blood, and levels of MIR497HG, miR-195, miR-497, and PD-L1 in serum sEVs were detected by qPCR, and clinical information was recorded. Our study revealed that the levels of MIR497HG, miR-195, miR-497 and PD-L1 in serum sEVs showed periodic changes; the time from peak to trough was approximately 4-5 days. The levels of sEV MIR497HG and miR-195 had a positive linear relationship with SOFA score (r values were -0.181 and -0.189; p values were 0.048 and 0.039, respectively). The recorded quantities of sEV MIR497HG, miR-195 and PD-L1 showed a substantial correlation with ARDS. ROC curve analysis revealed that sEV MIR497HG, miR-195 and miR-497 could predict the 28-day mortality of sepsis patients with an AUC of 0.66, 0.68 and 0.72, respectively. Levels of sEVs MIR497HG, miR-195, miR-497 and PD-L1 showed periodic changes with the immune status of sepsis, which provides a new exploration direction for immune function biomarkers and immunotherapy timing in sepsis patients.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Sepsis , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Antígeno B7-H1/metabolismo , Sepsis/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
15.
Nature ; 624(7991): 403-414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092914

RESUMEN

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Vías Nerviosas , Neuronas , Médula Espinal , Animales , Ratones , Hipotálamo , Neuronas/metabolismo , Neuropéptidos , Médula Espinal/citología , Médula Espinal/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Neurotransmisores , Mesencéfalo/citología , Formación Reticular/citología , Electrofisiología , Cerebelo/citología , Corteza Cerebral/citología
17.
Adv Sci (Weinh) ; : e2306171, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984874

RESUMEN

1D grain boundaries in transition metal dichalcogenides (TMDs) are ideal for investigating the collective electron behavior in confined systems. However, clear identification of atomic structures at the grain boundaries, as well as precise characterization of the electronic ground states, have largely been elusive. Here, direct evidence for the confined electronic states and the charge density modulations at mirror twin boundaries (MTBs) of monolayer NbSe2 , a representative charge-density-wave (CDW) metal, is provided. The scanning tunneling microscopy (STM) measurements, accompanied by the first-principles calculations, reveal that there are two types of MTBs in monolayer NbSe2 , both of which exhibit band bending effect and 1D boundary states. Moreover, the intrinsic CDW signatures of monolayer NbSe2 are dramatically suppressed as approaching an isolated MTB but can be either enhanced or suppressed in the MTB-constituted confined wedges. Such a phenomenon can be well explained by the MTB-CDW interference interactions. The results reveal the underlying physics of the confined electrons at MTBs of CDW metals, paving the way for the grain boundary engineering of the functionality.

19.
iScience ; 26(11): 108115, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876794

RESUMEN

The alkaline phosphatases (ALPs) are highly promiscuous enzymes and have been extensively investigated in mammals for their medical significance, but their functional promiscuity is relatively poorly understood in insects. Here, we first identified four ALP genes (designated as MvALP1-4) in the vetch aphid Megoura viciae that contained one alkaline phosphatase site, three metal-binding sites, and varied other functional sites. Phylogenetic analysis, molecular docking and the spatiotemporal expression profiling of MvALP1-4 were very different, indicating a promiscuous functionality. We also found that MvALP4 involved the biosynthesis of aphid alarm pheromones (EßF) in vitro and in vivo. Finally, transcriptome analysis in the stimulated and unstimulated aphids supported the involvement of MvALPs in the biosynthesis of aphid alarm pheromones. Our study identified a multifunctional ALP involved terpene synthase enzyme activity in the aphid, which contributes to the understanding of the functional plasticity of ALPs in insects.

20.
Libyan J Med ; 18(1): 2275416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37905303

RESUMEN

Introduction: Temperature management is an important aspect of the treatment of critically ill patients, but there are differences in the measurement and management of temperature in different Intensive Care Units (ICUs). The objective of this study was to understand the current situation of temperature measurement and management in ICUs in China, and to provide a basis for standardized temperature management in ICUs.Methods: A 20-question survey was used to gather information on temperature management strategies from ICUs across China. Data such as method and frequency of temperature measurement, management goals, cooling measures, and temperature management recommendations were collected.Results: A total of 425 questionnaires from unique ICUs were included in the study, with responses collected from all provinces and autonomous regions in China. Mercury thermometers were the most widely used measurement tool (82.39%) and the axilla was the most common measurement site (96.47%). There was considerable variability in the frequency of temperature measurement, the temperature at which intervention should begin, intervention duration, and temperature management goals. While there was no clearly preferred drug-based cooling method, the most widely used equipment-based cooling method was the ice blanket machine (93.18%). The most frequent recommendations for promoting temperature management were continuous monitoring and targeted management.Conclusion: Our investigation revealed a high level of variability in the methods of temperature measurement and management among ICUs in China. Since fever is a common clinical symptom in critically ill patients and can lead to prolonged ICU stays, we propose that standardized guidelines are urgently needed for the management of body temperature (BT) in these patients.


Asunto(s)
Enfermedad Crítica , Unidades de Cuidados Intensivos , Humanos , Temperatura , Enfermedad Crítica/terapia , Encuestas y Cuestionarios , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...