Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Mol Res ; 15(3)2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27525911

RESUMEN

Neurogenesis, recovery from nerve injury, neurodegeneration, and Parkinson's disease affect people's health, yet the underlying molecular mechanisms remain elusive. Here, we investigated the effect of ganglioside GM1 and neural growth factor (NGF) on neural stem cell (NSC) proliferation and differentiation in vitro to provide a scientific basis for comprehensive treatment of nervous system diseases via NSC application. As widely applied methods of relatively high accuracy, cell counts and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays were used to assess NSC proliferation. In addition, western blotting was employed to determine NSC differentiation. Cell counts and MTT assays demonstrated that in epidermal growth factor (EGF)- and basic fibroblast growth factor (bFGF)-containing medium, a high concentration of GM1, but not NGF, significantly elevated NSC proliferation. In NSC cultures lacking EGF and bFGF, cell counts and MTT values were significantly increased compared to those in the negative control group on days 4, 7, and 10 after GM1 (25, 100, and 200 ng/mL) but not NGF (25, 50, 100, and 200 ng/mL) treatment. Western blotting revealed significantly increased expression of nestin (an NSC marker) in NSCs treated with GM1, and upregulation of glial fibrillary acidic protein (a glial cell marker) and neuron-specific enolase (a neuron marker) in those administered NGF. Our results suggest that GM1 and NGF induce NSC proliferation and differentiation, respectively, in a dose-dependent manner.


Asunto(s)
Gangliósido G(M1)/farmacología , Factor de Crecimiento Nervioso/farmacología , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
2.
Genet Mol Res ; 14(4): 15349-55, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26634500

RESUMEN

Liver cancers are characterized by high morbidity and mortality owing to few effective drugs for its treatment. Wilfortrine has several pharmacological effects, including an inhibitory effect on liver cancer cell proliferation. However, whether wilfortrine can induce liver cancer cell apoptosis has not been elucidated. We investigated the role of wilfortrine on liver cancer cell HepG2 apoptosis and analyzed its possible mechanisms to provide a theoretical basis for clinical analysis of liver cancer pathogenesis. The liver cancer cell line HepG2 was treated with 40 mM wilfortrine for 48 h. Flow cytometry was applied to detect HepG2 cell apoptosis and cell cycle changes. Western blot was used to analyze Bcl-2 and Bax expression. The HepG2 cell apoptosis rate increased significantly after treatment with wilfortrine, especially the early apoptosis rate (P < 0.05). However, wilfortrine did not change the cell cycle of HepG2 cells. After wilfortrine treatment, Bcl- 2 expression decreased significantly (P < 0.05); on the contrary, Bax expression increased noticeably compared with the control group (P < 0.05). Wilfortrine can induce liver cancer cell HepG2 apoptosis, but with no effect on the cell cycle, mainly by promoting Bax expression and inhibiting anti-apoptotic protein Bcl-2 expression.


Asunto(s)
Alcaloides/farmacología , Proliferación Celular/efectos de los fármacos , Células Hep G2/efectos de la radiación , Neoplasias Hepáticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
3.
Plant Physiol ; 109(3): 761-770, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12228630

RESUMEN

A genomic fragment encoding one (HMGR1) of the three 3-hydroxy-3-methylglutaryl coenzyme A reductases (HMGRs) from Hevea brasiliensis (H.B.K.) Mull. Arg. (M.-L. Chye, C.-T. Tan, N.-H. Chua [1992] Plant Mol Biol 19: 473-484) was introduced into Nicotiana tabacum L. cv xanthi via Agrobacterium transformation to study the influence of the hmg1 gene product on plant isoprenoid biosynthesis. Transgenic plants were morphologically indistinguishable from control wild-type plants and displayed the same developmental pattern. Transgenic lines showed an increase in the level of total sterols up to 6-fold, probably because of an increased expression level of hmg1 mRNA and a corresponding increased enzymatic activity for HMGR, when compared with the level of total sterols from control lines not expressing the hmg1 transgene. In addition to the pathway end products, campesterol, sitosterol, and stigmasterol, some biosynthetic intermediates such as cycloartenol also accumulated in transgenic tissues. Most of the overproduced sterols were detected as steryl-esters and were likely to be stored in cytoplasmic lipid bodies. These data strongly support the conclusion that plant HMGR is a key limiting enzyme in phytosterol biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA