Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Bioorg Chem ; 151: 107628, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018799

RESUMEN

Thirty protoberberine derivatives, of which twenty five were new, were synthesized and evaluated for their anti-Helicobacter pylori (HP) activities, taking 2,3,10-trimethoxy-9-p-methylbenzylaminoprotopalmatine chloride 1 as the lead. Among them, berberine (BBR) derivative 7c displayed the highest potency against six tested metronidazole (MTZ)-resistant strains and two tested MTZ-susceptible strains with the MIC values of 0.4-1.6 µg/mL with favorable druglike profiles including low toxicity and high stabilities in plasma and artificial gastric fluid. Mechanistic study revealed that 7c might target HP urease with IC50 value of 0.27 µg/mL against Jack bean urease. Furthermore, 7c might change the permeability of the bacterial membrane and direct interact with HP DNA, which also contribute to its bactericidal activity. Therefore, BBR derivatives constituted a new family of anti-HP candidates, with the advantage of good safety profile and multi-target mechanisms, and are worthy for further investigation.

2.
Future Med Chem ; : 1-17, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949857

RESUMEN

PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.


[Box: see text].

3.
Environ Pollut ; : 124536, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029862

RESUMEN

Tri (2-Ethylhexyl) phosphate (TEHP), widely used as a fire retardant and plasticizer, has been commonly found in the environment. Its potential health-related risks, especially reproductive toxicity, have aroused concern. However, the potential cellular mechanisms remain unexplored. In this study, we aimed to investigate the molecular mechanisms underlying TEHP-caused cell damage in Sertoli cells, which play a crucial role in supporting spermatogenesis. Our findings indicate that TEHP induces apoptosis in 15P-1 mouse Sertoli cells. Subsequently, we conducted RNA sequencing analyses, which suggested that ER stress, autophagy, and MAPK-related pathways may participate in TEHP-induced cytotoxicity. Furthermore, we demonstrated that TEHP triggers ER stress, activates p38 MAPK, and inhibits autophagy flux. Then, we showed that the inhibition of ER stress or p38 MAPK activation attenuates TEHP-induced apoptosis, while the inhibition of autophagy flux is responsible for TEHP-induced apoptosis. These results collectively reveal that TEHP induces ER stress, activates p38, and inhibits autophagy flux, ultimately leading to apoptosis in Sertoli cells. These shed light on the molecular mechanisms underlying TEHP-associated testicular toxicity.

4.
Biol Reprod ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874314

RESUMEN

The morbidity of polycystic ovary syndrome (PCOS) is in highly increasing rate nowadays. PCOS not only affects the fertility in women, but also threatens the health of whole life. Hence, to find the prognostic risk factors is of great value. However, the effective predictors in clinical practice of PCOS are still in blackness. In this study, we found Klotho was increased in FF (Follicular Fluid) and primary luteinized granulosa cells (GCs) from PCOS patients with hyperandrogenism. Furthermore, we found follicular Klotho was negatively correlated with numbers of mature oocytes, and positively correlated with serum testosterone, LH, and LH/FSH levels menstrual cycle and number of total antral follicles in PCOS patients. In primary luteinized GCs, the increased Klotho was accompanied with upregulation of cell apoptosis and inflammation-related genes. In ovaries of PCOS mice and cultured human KGN cell line, Klotho was up-regulated and accompanied by apoptosis, inflammation and mitochondrial dysfunction. Therefore, our findings suggest new mechanisms for granulosa cell injury and revealed to target inhibit Klotho maybe a new therapeutic strategy for treatment of PCOS.

5.
J Environ Sci (China) ; 145: 164-179, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844317

RESUMEN

The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.


Asunto(s)
Microcistinas , Análisis de Secuencia de ARN , Microcistinas/toxicidad , Animales , Ratones , Hígado/efectos de los fármacos , Toxinas Marinas/toxicidad , Leucina , Hepatocitos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas
6.
Adv Biol (Weinh) ; : e2300711, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864247

RESUMEN

Ovarian endometrioma (OE) is a common gynecological condition characterized by the formation of "chocolate cysts". Recent research indicates that the cyst fluid acts as a "toxic environment" for the ovary and plays a significant role in the development of OE, with macrophages being pivotal. However, the specific molecular and cellular mechanisms of it are not fully understood. In this study, clinical samples are integrated, single-cell sequencing, in vivo and in vitro experimental models to comprehensively investigate the effects of OE fluid on ovarian function and the mechanisms of it. Combined with bioinformatics analysis and experimental validation, the findings demonstrate that OE fluid can cause ovarian function decline, which associated with inflammatory response, and mitochondrial dysfunction and cellular senescence, while activating the cGAS/STING signaling pathway. As a STING inhibitor, H-151 effectively alleviates ovarian dysfunction, inflammatory state and cell apoptosis induced by OE fluid. Furthermore, it is also discovered that H-151 can inhibit OE fluid-induced mitochondrial dysfunction and cellular senescence. These findings provide important theoretical and experimental foundations for further research and development of STING inhibitors as potential drugs for treating ovarian dysfunction.

7.
Eur J Med Chem ; 275: 116577, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38875809

RESUMEN

Sphingosine kinase 2 (SphK2) has emerged as a promising target for cancer therapy due to its critical role in tumor growth. However, the lack of potent and selective inhibitors has hindered its clinical application. Herein, we report the design and synthesis of a series of novel SphK2 inhibitors, culminating in the identification of compound 12q as a highly selective and potent inhibitor of SphK2. Molecular dynamics simulations suggest that the incorporation of larger substitution groups facilitates a more effective occupation of the binding site, thereby stabilizing the complex. Compared to the widely used inhibitor ABC294640, compound 12q exhibits superior anti-proliferative activity against various cancer cells, inducing G2 phase arrest and apoptosis in liver cancer cells HepG2. Notably, 12q inhibited migration and colony formation in HepG2 and altered intracellular sphingolipid content. Moreover, intraperitoneal administration of 12q in mice resulted in decreased levels of S1P. 12q provides a valuable tool compound for exploring the therapeutic potential of targeting SphK2 in cancer.


Asunto(s)
Acetamidas , Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Fosfotransferasas (Aceptor de Grupo Alcohol) , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Acetamidas/farmacología , Acetamidas/síntesis química , Acetamidas/química , Estructura Molecular , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
8.
Ecotoxicol Environ Saf ; 279: 116462, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776784

RESUMEN

Tris (2-ethylhexyl) phosphate (TEHP) is a frequently used organophosphorus flame retardant with significant ecotoxicity and widespread human exposure. Recent research indicates that TEHP has reproductive toxicity. However, the precise cell mechanism is not enough understood. Here, by using testicular mesenchymal stromal TM3 cells as a model, we reveal that TEHP induces apoptosis. Then RNA sequencing analysis, immunofluorescence, and western blotting results show that THEP inhibits autophagy flux and enhances endoplasmic reticulum (ER) stress. Moreover, the activation of the ER stress is critical for TEHP-induced cell injury. Interestingly, TEHP-induced ER stress is contributed to autophagic flux inhibition. Furthermore, pharmacological inhibition of autophagy aggravates, and activation of autophagy attenuates TEHP-induced apoptosis. In summary, these findings indicate that TEHP triggers apoptosis in mouse TM3 cells through ER stress activation and autophagy flux inhibition, offering a new perspective on the mechanisms underlying TEHP-induced interstitial cytotoxicity in the mouse testis.


Asunto(s)
Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Retardadores de Llama , Células Intersticiales del Testículo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Autofagia/efectos de los fármacos , Animales , Masculino , Células Intersticiales del Testículo/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Línea Celular
9.
Sci Data ; 11(1): 554, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816414

RESUMEN

Warburgia ugandensis and Saururus chinensis are two of the most important medicinal plants in magnoliids and are widely utilized in traditional Kenya and Chinese medicine, respectively. The absence of higher-quality reference genomes has hindered research on the medicinal compound biosynthesis mechanisms of these plants. We report the chromosome-level genome assemblies of W. ugandensis and S. chinensis, and generated 1.13 Gb and 0.53 Gb genomes from 74 and 27 scaffolds, respectively, using BGI-DIPSEQ, Nanopore, and Hi-C sequencing. The scaffold N50 lengths were 82.97 Mb and 48.53 Mb, and the assemblies were anchored to 14 and 11 chromosomes of W. ugandensis and S. chinensis, respectively. In total, 24,739 and 20,561 genes were annotated, and 98.5% and 98% of the BUSCO genes were fully represented, respectively. The chromosome-level genomes of W. ugandensis and S. chinensis will be valuable resources for understanding the genetics of these medicinal plants, studying the evolution of magnoliids and angiosperms and conserving plant genetic resources.


Asunto(s)
Genoma de Planta , Plantas Medicinales , Plantas Medicinales/genética , Cromosomas de las Plantas/genética , Saururaceae/genética
10.
J Colloid Interface Sci ; 665: 1079-1090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581719

RESUMEN

Directly capturing CO2 in ambient air and converting it into value-added fuels using photocatalysis is a potentially valuable technology. In this study, Cu-porphyrin (tetrakis-carboxyphenyl porphyrin copper, CuTCPP) was innovatively anchored on the surface of TiO2 (titanium dioxide) nanosheets to form an S-scheme heterojunction. Based on this, a photocatalytic reaction system for stably converting CO2 in ambient air into value-added fuels at the gas-solid interface was constructed without addition of sacrificial agents and alkaline liquids. Under the illumination of visible light and sunlight, the evolution rate of CO is 56 µmol·g-1·h-1 and 73 µmol·g-1·h-1, respectively, with a potential CO2 conversion rate of 35.8 % and 50.4 %. The enhanced of photocatalytic performance is attributed to the introduction of CuTCPP, which provides additional active sites, significantly improves capture capacity of CO2 and the utilization of electrons. Additionally, the formation of S-scheme heterojunction expands the redox range and improves the separation efficiency of photo-generated charges.

11.
J Med Chem ; 67(9): 7033-7047, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38634331

RESUMEN

A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.


Asunto(s)
Antineoplásicos , Gemfibrozilo , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Gemfibrozilo/farmacología , Ratones Endogámicos BALB C , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis química
12.
Eur J Med Chem ; 271: 116408, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38621327

RESUMEN

As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.


Asunto(s)
Aciltransferasas , Lipoilación , Bibliotecas de Moléculas Pequeñas , Humanos , Aciltransferasas/metabolismo , Aciltransferasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Estructura Molecular , Proteínas/metabolismo , Proteínas/química
13.
Gastroenterol Rep (Oxf) ; 12: goae016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529014

RESUMEN

Background: Since boosting stem cell resilience in stressful environments is critical for the therapeutic efficacy of stem cell-based transplantations in liver disease, this study aimed to establish the efficacy of a transient plasmid-based preconditioning strategy for boosting the capability of mesenchymal stromal cells (MSCs) for anti-inflammation/antioxidant defenses and paracrine actions in recipient hepatocytes. Methods: Human adipose mesenchymal stem cells (hADMSCs) were subjected to transfer, either with or without the nuclear factor erythroid 2-related factor 2 (Nrf2)/Dickkopf1 (DKK1) genes, followed by exposure to TNF-α/H2O2. Mouse models were subjected to acute chronic liver failure (ACLF) and subsequently injected with either transfected or untransfected MSCs. These hADMSCs and ACLF mouse models were used to investigate the interaction between Nrf2/DKK1 and the hepatocyte receptor cytoskeleton-associated protein 4 (CKAP4). Results: Activation of Nrf2 and DKK1 enhanced the anti-stress capacity of MSCs in vitro. In a murine model of ACLF, transient co-overexpression of Nrf2 and DKK1 via plasmid transfection improved MSC resilience against inflammatory and oxidative assaults, boosted MSC transplantation efficacy, and promoted recipient liver regeneration due to a shift from the activation of the anti-regenerative IFN-γ/STAT1 pathway to the pro-regenerative IL-6/STAT3 pathway in the liver. Importantly, the therapeutic benefits of MSC transplantation were nullified when the receptor CKAP4, which interacts with DKK1, was specifically removed from recipient hepatocytes. However, the removal of the another receptor low-density lipoprotein receptor-related protein 6 (LRP6) had no impact on the effectiveness of MSC transplantation. Moreover, in long-term observations, no tumorigenicity was detected in mice following transplantation of transiently preconditioned MSCs. Conclusions: Co-stimulation with Nrf2/DKK1 safely improved the efficacy of human MSC-based therapies in murine models of ACLF through CKAP4-dependent paracrine mechanisms.

14.
Adv Sci (Weinh) ; 11(18): e2309255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429906

RESUMEN

Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Leucina , Ratones Endogámicos C57BL , Animales , Ratones , Leucina/metabolismo , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/genética , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/microbiología , Dieta Alta en Grasa , Resistencia a la Insulina/fisiología , Triptófano/metabolismo , Ácidos Indolacéticos/metabolismo , Heces/microbiología , Clostridiales/metabolismo , Clostridiales/genética , Humanos
15.
Neural Regen Res ; 19(10): 2310-2320, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488565

RESUMEN

JOURNAL/nrgr/04.03/01300535-202410000-00032/figure1/v/2024-02-06T055622Z/r/image-tiff Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries--the United States, China, Japan, the United Kingdom, Spain, Germany, and France--by searching for all global diabetic eye disease journal articles in the Web of Science and PubMed databases, all global registered clinical trials in the ClinicalTrials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority (89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema (9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development (58.19%). Approximately half of the trials (49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic (40 out of 1830; 2.19%) and diabetic eye disease (3 out of 1830; 0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.

16.
Platelets ; 35(1): 2316743, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38390892

RESUMEN

Microfluidic technology has emerged as a powerful tool in studying arterial thrombosis, allowing researchers to construct artificial blood vessels and replicate the hemodynamics of blood flow. This technology has led to significant advancements in understanding thrombosis and platelet adhesion and aggregation. Microfluidic models have various types and functions, and by studying the fabrication methods and working principles of microfluidic chips, applicable methods can be selected according to specific needs. The rapid development of microfluidic integrated system and modular microfluidic system makes arterial thrombosis research more diversified and automated, but its standardization still needs to be solved urgently. One key advantage of microfluidic technology is the ability to precisely control fluid flow in microchannels and to analyze platelet behavior under different shear forces and flow rates. This allows researchers to study the physiological and pathological processes of blood flow, shedding light on the underlying mechanisms of arterial thrombosis. In conclusion, microfluidic technology has revolutionized the study of arterial thrombosis by enabling the construction of artificial blood vessels and accurately reproducing hemodynamics. In the future, microfluidics will place greater emphasis on versatility and automation, holding great promise for advancing antithrombotic therapeutic and prophylactic measures.


What is the context? To study the mechanism of arterial thrombosis, including the platelet adhesion and aggregation behavior and the coagulation process.Microfluidic technology is commonly used to study thrombosis. Microfluidic technology can simulate the real physiological environment on the microscopic scale in vitro, with high throughput, low cost, and fast speed.As an innovative experimental platform, microfluidic technology has made remarkable progress and has found applications in the fields of biology and medicine.What is new? This review summarizes the different fabrication methods of microfluidics and compares the advantages and disadvantages of these methods. Recent developments in microfluidic integrated systems and modular microfluidic systems have led to more diversified and automated microfluidic chips in the future.The different types and functions of microfluidic models are summarized. Platelet adhesion aggregation and coagulation processes, as well as arterial thrombus-related shear force changes and mechanical behaviors, were investigated by constructing artificial blood vessels and reproducing hemodynamics.Microfluidics can provide a basis for the development of personalized thrombosis treatment strategies. By analyzing the mechanism of action of existing drugs, using microfluidic technology for high-throughput screening of drugs and evaluating drug efficacy, more drug therapy possibilities can be developed.What is the impact?This review utilizes microfluidics to further advance the study of arterial thrombosis, and microfluidics is also expected to play a greater role in the biomedical field in the future.


Asunto(s)
Sustitutos Sanguíneos , Trombosis , Humanos , Microfluídica/métodos , Plaquetas/patología , Trombosis/patología , Adhesividad Plaquetaria
17.
Cancer Lett ; 587: 216622, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38246224

RESUMEN

Triptolide, a natural bioactive compound derived from herbal medicine Tripterygium wilfordii, has multiple biological activities including anti-cancer effect, which is being tested in clinical trials for treating cancers. However, the exact mechanism by which Triptolide exerts its cytotoxic effects, particularly its specific protein targets, remains unclear. Here, we show that Triptolide effectively induces cytotoxicity in gastric cancer cells by increasing reactive oxygen species (ROS) levels. Further investigations reveal that ROS accumulation contributes to the induction of Endoplasmic Reticulum (ER) stress, and subsequently autophagy induction in response to Triptolide. Meanwhile, this autophagy is cytoprotective. Interestingly, through activity-based protein profiling (ABPP) approach, we identify peroxiredoxins-2 (PRDX2), a component of the key enzyme systems that act in the defense against oxidative stress and protect cells against hydroperoxides, as direct binding target of Triptolide. By covalently binding to PRDX2 to inhibit its antioxidant activity, Triptolide increases ROS levels. Moreover, overexpression of PRDX2 inhibits and knockdown of the expression of PRDX2 increases Triptolide-induced apoptosis. Collectively, these results indicate PRDX2 as a direct target of Triptolides for inducing apoptosis. Our results not only provide novel insight into the underlying mechanisms of Triptolide-induced cytotoxic effects, but also indicate PRDX2 as a promising potential therapeutic target for developing anti-gastric cancer agents.


Asunto(s)
Diterpenos , Fenantrenos , Neoplasias Gástricas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Peroxirredoxinas/genética , Diterpenos/farmacología , Fenantrenos/farmacología , Autofagia , Apoptosis , Compuestos Epoxi/farmacología
18.
Sci Total Environ ; 917: 169861, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38185161

RESUMEN

Perfluorooctanoic acid (PFOA) is a man-made chemical broadly distributed in various ecological environment and human bodies, which poses potential health risks. Its toxicity, especially the male reproduction toxicity has drawn increasing attention due to declining birth rates in recent years. However, how PFOA induces male reproductive toxicity remains unclear. Here, we characterize PFOA-induced cell injury and reveal the underlying mechanism in mouse Leydig cells, which are critical to spermatogenesis in the testes. We show that PFOA induces cell injury as evidenced by reduced cell viability, cell morphology changes and apoptosis induction. RNA-sequencing analysis reveals that PFOA-induced cell injury is correlated with compromised autophagy and activated endoplasmic reticulum (ER) stress, two conserved biological processes required for regulating cellular homeostasis. Mechanistic analysis shows that PFOA inhibits autophagosomes formation, and activation of autophagy rescues PFOA-induced apoptosis. Additionally, PFOA activates ER stress, and pharmacological inhibition of ER stress attenuates PFOA-induced cell injury. Taken together, these results demonstrate that PFOA induces cell injury through inhibition of autophagosomes formation and induction of ER stress in Leydig cells. Thus, our study sheds light on the cellular mechanisms of PFOA-induced Leydig cell injury, which may be suggestive to human male reproductive health risk assessment and prevention from PFOA exposure-induced reproductive toxicity.


Asunto(s)
Autofagosomas , Fluorocarburos , Células Intersticiales del Testículo , Ratones , Animales , Humanos , Masculino , Estrés del Retículo Endoplásmico , Caprilatos/toxicidad , Apoptosis
19.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983290

RESUMEN

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Anticuerpos Neutralizantes , Serogrupo , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epítopos , Proteínas de la Cápside/genética , Anticuerpos Monoclonales
20.
Sci Rep ; 13(1): 19565, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949894

RESUMEN

We have clarified the study area has a history of 65 years and has been restored for 6 years. This study investigated the carbon storage characteristics of undisturbed natural forests and restored mining vegetation in Yunnan Province, China. The goal was to quantify carbon reserves and increments to inform ecological restoration strategies. Four vegetation components (tree, shrub, herb, litter) and five soil layers (0-10, 10-20, 20-30, 30-40, 40-60 cm) were analyzed. In natural forest, the tree layer stored 60% of carbon (273 Mg ha-1), overwhelmingly dominating vegetation carbon stocks. Shrub, herb, and litter layers each comprised < 1%. Surface soil layers (0-30 cm) stored 64% of soil carbon. In the restored mining area, the tree layer contributed 75% of vegetation carbon increment (16 Mg ha-1), though stocks were lower than natural forest. Soil layers showed the highest carbon increment (69%) despite lower biomass than natural conditions. Unexploited forests thus exhibit robust carbon storage, while restored mining areas have weaker carbon gains, indicating recovery potential. Strategic interventions targeting soil quality, stimulating vegetation growth, and increasing carbon sequestration could significantly augment reserves and ecological functionality. Prioritizing vegetation succession and soil revitalization are paramount to ensuring ecological integrity and sustainable development. Fostering a positive regional ecological feedback loop will be pivotal. This research quantifies carbon storage differences between undisturbed and restored mining areas, highlighting soil and vegetation as critical targets for optimizing carbon sequestration and ecosystem recovery in degraded environments.


Asunto(s)
Carbono , Ecosistema , Carbono/metabolismo , China , Bosques , Biomasa , Árboles/metabolismo , Secuestro de Carbono , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...