Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Br J Haematol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955502

RESUMEN

This open-label, prospective trial evaluated the combination of ixazomib, cyclophosphamide and dexamethasone (ICD) in 12 newly diagnosed POEMS syndrome patients. The study is registered with the Chinese Clinical Trials Registry (ChiCTR2000030072). The treatment protocol consisted of 12 cycles of the ICD regimen compromising ixazomib (4 mg on Days 1, 8 and 15), oral cyclophosphamide (300 mg on Days 1, 8 and 15) and dexamethasone (20 mg weekly). A total of 12 patients received a median of 10 (range: 3-23) cycles of the ICD regimen. The haematological response could be evaluated in 10 patients. The overall haematological response rate was 80% (8/10), with 30% (3/10) achieving complete haematological response, and the overall serum VEGF response rate and neurological response were 100% and 83.3% respectively. Two patients experienced grade 3/4 AEs, including diarrhoea (n = 1) and leukopenia (n = 1). The combination of ixazomib, cyclophosphamide and dexamethasone demonstrated both efficacy and safety in newly diagnosed POEMS syndrome, making it a viable treatment option.

2.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630847

RESUMEN

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Asunto(s)
Aprendizaje Profundo , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Lesiones Precancerosas , Humanos , Persona de Mediana Edad , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Estudios Prospectivos , Lesiones Precancerosas/patología
3.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
4.
J Org Chem ; 89(7): 5060-5068, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38525894

RESUMEN

Radical cyclization has been demonstrated to be an efficient method to access functionalized heterocycles from easily accessible raw materials. Described herein is the development of a photocatalytic proton-coupled electron transfer (PCET) strategy for the synthesis of isoquinoline-1,3-diones using readily prepared naphthalimide (NI)-based organic photocatalysts. The process features free metal-complex photocatalysts, acids, and mild reaction conditions. This mild radical cyclization protocol has a broad substrate scope and can be effectively applied to a variety of medicinally relevant substrates. Furthermore, control experiments were conducted to elucidate the mechanism of this visible light-induced methodology.

5.
Int J Med Sci ; 21(1): 61-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164345

RESUMEN

Background: Primary biliary cholangitis (PBC) is a rare autoimmune liver disease with few effective treatments and a poor prognosis, and its incidence is on the rise. There is an urgent need for more targeted treatment strategies to accurately identify high-risk patients. The use of stochastic survival forest models in machine learning is an innovative approach to constructing a prognostic model for PBC that can improve the prognosis by identifying high-risk patients for targeted treatment. Method: Based on the inclusion and exclusion criteria, the clinical data and follow-up data of patients diagnosed with PBC-associated cirrhosis between January 2011 and December 2021 at Taizhou Hospital of Zhejiang Province were retrospectively collected and analyzed. Data analyses and random survival forest model construction were based on the R language. Result: Through a Cox univariate regression analysis of 90 included samples and 46 variables, 17 variables with p-values <0.1 were selected for initial model construction. The out-of-bag (OOB) performance error was 0.2094, and K-fold cross-validation yielded an internal validation C-index of 0.8182. Through model selection, cholinesterase, bile acid, the white blood cell count, total bilirubin, and albumin were chosen for the final predictive model, with a final OOB performance error of 0.2002 and C-index of 0.7805. Using the final model, patients were stratified into high- and low-risk groups, which showed significant differences with a P value <0.0001. The area under the curve was used to evaluate the predictive ability for patients in the first, third, and fifth years, with respective results of 0.9595, 0.8898, and 0.9088. Conclusion: The present study constructed a prognostic model for PBC-associated cirrhosis patients using a random survival forest model, which accurately stratified patients into low- and high-risk groups. Treatment strategies can thus be more targeted, leading to improved outcomes for high-risk patients.


Asunto(s)
Cirrosis Hepática Biliar , Humanos , Pronóstico , Cirrosis Hepática Biliar/diagnóstico , Cirrosis Hepática Biliar/tratamiento farmacológico , Ácido Ursodesoxicólico/uso terapéutico , Estudios Retrospectivos , Cirrosis Hepática/tratamiento farmacológico
6.
Sci Total Environ ; 902: 166451, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611720

RESUMEN

The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2-)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2-, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggested that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are dominant in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight NO2- significantly stimulates HONO and NOx emissions from dryland agricultural soils, dominated by nitrification. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.

7.
Technol Cancer Res Treat ; 22: 15330338231184995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37365925

RESUMEN

BACKGROUND: According to previous literatures, plasma thioredoxin reductase (TrxR) level was significantly elevated in various malignant tumors and serve as a potential biomarker for diagnosis and prognostic prediction. However, there is little awareness of the clinical value of plasma TrxR in gynecologic malignancies. In the present study, we aim to evaluate the diagnostic accuracy of plasma TrxR in gynecologic cancer and explore its role in treatment surveillance. METHODS: We retrospectively enrolled 134 patients with gynecologic cancer and 79 patients with benign gynecologic disease. The difference of plasma TrxR activity and tumor markers level between two groups was compared using Mann-Whitney U test. By detecting pretreatment and post-treatment level of TrxR and conventional tumor markers, we further assessed the change trend of them with the Wilcoxon signed-ranks test. RESULTS: Compared with benign control [5.7 (5, 6.6) U/mL], statistically significant increase of TrxR activity was observed in gynecologic cancer group [8.4 (7.25, 9.825) U/mL] (P < .0001), regardless of age and stage. On the basis of receiver operating characteristic (ROC) curves, we found plasma TrxR shows the highest diagnostic efficacy for distinguishing malignancy with benign disease, with an area under the curve (AUC) of 0.823 (95% confidence interval [CI] = 0.767-0.878), in the whole cohort. Besides, patients receiving treatment previously [8 (6.5, 9) U/mL] had a decreased TrxR level relative to treatment-native patients [9.9 (8.6, 10.85) U/mL]. Furthermore, follow-up data showed that plasma TrxR level would be evidently decreased after two courses of antitumor therapy (P < .0001), which is consistent with the downward trend of conventional tumor markers. CONCLUSION: Collectively, all these results demonstrated plasma TrxR is an effective parameter for gynecologic cancer diagnosis and concurrently acts as a promising biomarker for treatment response assessment.


Asunto(s)
Neoplasias de los Genitales Femeninos , Reductasa de Tiorredoxina-Disulfuro , Humanos , Femenino , Neoplasias de los Genitales Femeninos/diagnóstico , Estudios Retrospectivos , Biomarcadores de Tumor , Pronóstico , Antioxidantes
8.
Biosensors (Basel) ; 13(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37185550

RESUMEN

In recent years, the high prevalence of Salmonella has emerged as a serious threat to public safety, prompting attempts to utilize accurate, rapid, and direct methods to ensure food safety. In this study, a multifunctional platform featuring dual-mode detection channels (colorimetric-fluorescence) combined with polymer chain reaction (PCR) was proposed for the sensitive and rapid detection of Salmonella. Additionally, the colorimetric measurements were achieved by color changes induced by methylene blue (MB) insertion into the double-stranded DNA, and the fluorescence measurements were performed by internal filter effect (IFE)-induced fluorescence quenching of upconversion nanoparticles (UCNPs) by MB. The results showed that the IFE and PCR amplification processes improved the sensitivity of the sensor towards Salmonella detection, with a limit of detection (LOD) of 21.8 CFU/mL. Moreover, this colorimetric-fluorescence dual-mode PCR biosensor was applied to determine Salmonella in food samples, such as chicken, egg, and fish, which produced satisfactory results. Overall, the present study results demonstrate the potential for combining PCR amplification with IFE to develop an efficient and reliable dual-mode analysis platform to safeguard food security.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Animales , Azul de Metileno , Salmonella , Reacción en Cadena de la Polimerasa/métodos , Técnicas Biosensibles/métodos , Límite de Detección
9.
Front Oncol ; 13: 1097907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251922

RESUMEN

Purpose: This study aims to develop and validate a prediction model for non-operative, epidermal growth factor receptor (EGFR)-positive, locally advanced elderly esophageal cancer (LAEEC). Methods: A total of 80 EGFR-positive LAEEC patients were included in the study. All patients underwent radiotherapy, while 41 cases received icotinib concurrent systemic therapy. A nomogram was established using univariable and multivariable Cox analyses. The model's efficacy was assessed through area under curve (AUC) values, receiver operating characteristic (ROC) curves at different time points, time-dependent AUC (tAUC), calibration curves, and clinical decision curves. Bootstrap resampling and out-of-bag (OOB) cross-validation methods were employed to verify the model's robustness. Subgroup survival analysis was also conducted. Results: Univariable and multivariable Cox analyses revealed that icotinib, stage, and ECOG score were independent prognostic factors for LAEEC patients. The AUCs of model-based prediction scoring (PS) for 1-, 2-, and 3-year overall survival (OS) were 0.852, 0.827, and 0.792, respectively. Calibration curves demonstrated that the predicted mortality was consistent with the actual mortality. The time-dependent AUC of the model exceeded 0.75, and the internal cross-validation calibration curves showed good agreement between predicted and actual mortality. Clinical decision curves indicated that the model had a substantial net clinical benefit within a threshold probability range of 0.2 to 0.8. Model-based risk stratification analysis demonstrated the model's excellent ability to distinguish survival risk. Further subgroup analyses showed that icotinib significantly improved survival in patients with stage III and ECOG score of 1 (HR 0.122, P<0.001). Conclusions: Our nomogram model effectively predicts the overall survival of LAEEC patients, and the benefits of icotinib were found in the clinical stage III population with good ECOG scores.

10.
World J Gastrointest Oncol ; 15(2): 225-239, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36908317

RESUMEN

Colorectal cancer (CRC) is the second deadliest cancer and the third-most common malignancy in the world. Surgery, chemotherapy, and targeted therapy have been widely used to treat CRC, but some patients still develop resistance to these treatments. Ferroptosis is a novel non-apoptotic form of cell death. It is an iron-dependent non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species and has been suggested to play a role in reversing resistance to anticancer drugs. This review summarizes recent advances in the prognostic role of ferroptosis in CRC and the mechanism of action in CRC.

11.
Chem Commun (Camb) ; 59(26): 3922-3925, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919773

RESUMEN

In situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was developed for the first time to observe the hydrogen isotope separation behavior at active CuI sites within CuI-MFU-4l, and clear evidence of the preferential adsorption of D2 over H2 was directly captured. More importantly, our results show direct spectral proof to clarify the chemical affinity quantum sieving mechanism of hydrogen isotope separation within porous adsorbents.

12.
Anal Chim Acta ; 1239: 340751, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628739

RESUMEN

In this study, we reported a novel sensing platform based on fluorescence quenching composed of alendronic acid (ADA) coated upconversion nanoparticles (UCNPs) and Nile Blue (NB) combined with polymerase chain reaction (PCR) for rapid, sensitive, and specific detection of Escherichia coli (E. coli). As a fluorescence acceptor, NB has a broad absorption band and can quench upconversion fluorescence intensity at 544 nm and 658 nm based on IFE. PCR is a double-stranded DNA (dsDNA) amplification technique with high specificity. The NB-dsDNA complex can be formed by intercalation of NB between base pairs and groove of dsDNA, leading to upconversion fluorescence recovery. The ADA-coated UCNPs@NB sensing platform achieved to detect E. coli in 1.5 h, with a lower limit of detection (33 CFU mL-1). In addition, the sensitivity of the ADA@UCNPs-NB fluorescence sensor under different PCR cycle numbers was discussed. The results showed that the proposed sensor could effectively shorten the assay time (1.0 h) while maintaining excellent sensitivity. This study demonstrated a rapid and sensitive analytical method for detecting E. coli in chicken, providing a reference for constructing PCR fluorescence sensors.


Asunto(s)
Proteínas de Escherichia coli , Nanopartículas , Escherichia coli/genética , ADN/genética , Técnicas de Amplificación de Ácido Nucleico , Transferencia Resonante de Energía de Fluorescencia/métodos , Factores de Transcripción/genética , O(6)-Metilguanina-ADN Metiltransferasa
13.
Front Microbiol ; 13: 1033050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338061

RESUMEN

Insufficient prey density is a major factor hindering the recovery of the Amur tiger (Panthera tigris altaica), and to effectively restore the Amur tiger, red deer (Cervus elaphus) was released into the Huangnihe National Nature Reserve of Northeast China as the main reinforcement. Differences in feeding and synergistic changes caused by the intestinal microbial communities could impact the adaptation of wildlife following reintroductions into field environments. We analyzed the foraging changes in shaping the intestinal microbial community of the red deer after being released to the Huangnihe National Nature Reserve and screened the key microbial flora of the red deer when processing complex food resources. The feeding and intestinal microbial communities of the red deer were analyzed by plant Deoxyribonucleic acid (DNA) barcoding sequencing and 16S rRNA high-throughput sequencing, respectively. The results showed that there were significant differences in food composition between wild and released groups [released in 2019 (R2): n = 5; released in 2021 (R0): n = 6]; the wild group fed mainly on Acer (31.8%) and Abies (25.6%), R2 fed mainly on Betula (44.6%), R0 had not formed a clear preferred feeding pattern but had certain abilities to process and adapt to natural foods. Firmicutes (77.47%) and Bacteroides (14.16%) constituted the main bacterial phylum of red deer, of which, the phylum Firmicutes was the key species of the introduced red deer for processing complex food resources (p < 0.05). The wild release process significantly changed the intestinal microbial structure of the red deer, making it integrate into the wild red deer. The period since release into the wild may be a key factor in reshaping the structure of the microbial community. This study suggested that the intestinal microbial structure of red deer was significantly different depending on how long since captive deer has been translocated. Individuals that have lived in similar environments for a long time will have similar gut microbes. This is the adaption process of the wildlife to natural environment after wild release, taking into account the gut microbes, and the feeding changes in shaping microbial communities can help introduced red deer match complex food resources and novel field environments.

14.
Front Med (Lausanne) ; 9: 886853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652070

RESUMEN

Convolutional neural networks in the field of artificial intelligence show great potential in image recognition. It assisted endoscopy to improve the detection rate of early gastric cancer. The 5-year survival rate for advanced gastric cancer is less than 30%, while the 5-year survival rate for early gastric cancer is more than 90%. Therefore, earlier screening for gastric cancer can lead to a better prognosis. However, the detection rate of early gastric cancer in China has been extremely low due to many factors, such as the presence of gastric cancer without obvious symptoms, difficulty identifying lesions by the naked eye, and a lack of experience among endoscopists. The introduction of artificial intelligence can help mitigate these shortcomings and greatly improve the accuracy of screening. According to relevant reports, the sensitivity and accuracy of artificial intelligence trained on deep cirrocumulus neural networks are better than those of endoscopists, and evaluations also take less time, which can greatly reduce the burden on endoscopists. In addition, artificial intelligence can also perform real-time detection and feedback on the inspection process of the endoscopist to standardize the operation of the endoscopist. AI has also shown great potential in training novice endoscopists. With the maturity of AI technology, AI has the ability to improve the detection rate of early gastric cancer in China and reduce the death rate of gastric cancer related diseases in China.

15.
World J Gastrointest Oncol ; 14(3): 690-702, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35321281

RESUMEN

BACKGROUND: Gastric cancer (GC), a multifactorial disease, is caused by pathogens, such as Helicobacter pylori (H. pylori) and Epstein-Barr virus (EBV), and genetic components. AIM: To investigate microbiomes and host genome instability by cost-effective, low-coverage whole-genome sequencing, as biomarkers for GC subtyping. METHODS: Samples from 40 GC patients were collected from Taizhou Hospital, Zhejiang Province, affiliated with Wenzhou Medical University. DNA from the samples was subjected to low-coverage whole-genome sequencing with a median genome coverage of 1.86 × (range: 1.03 × to 3.17 ×) by Illumina × 10, followed by copy number analyses using a customized bioinformatics workflow ultrasensitive chromosomal aneuploidy detector. RESULTS: Of the 40 GC samples, 20 (50%) were found to be enriched with microbiomes. EBV DNA was detected in 5 GC patients (12.5%). H. pylori DNA was found in 15 (37.5%) patients. The other 20 (50%) patients were found to have relatively higher genomic instability. Copy number amplifications of the oncogenes, ERBB2 and KRAS, were found in 9 (22.5%) and 7 (17.5%) of the GC samples, respectively. EBV enrichment was found to be associated with tumors in the gastric cardia and fundus. H. pylori enrichment was found to be associated with tumors in the pylorus and antrum. Tumors with elevated genomic instability showed no localization and could be observed in any location. Additionally, H. pylori-enriched GC was found to be associated with the Borrmann type II/III and gastritis history. EBV-enriched GC was not associated with gastritis. No statistically significant correlation was observed between genomic instability and gastritis. Furthermore, these three different molecular subtypes showed distinct survival outcomes (P = 0.019). EBV-positive tumors had the best prognosis, whereas patients with high genomic instability (CIN+) showed the worst survival. Patients with H. pylori infection showed intermediate prognosis compared with the other two subtypes. CONCLUSION: Thus, using low-coverage whole-genome sequencing, GC can be classified into three categories based on disease etiology; this classification may prove useful for GC diagnosis and precision medicine.

16.
Sci Total Environ ; 823: 153710, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149064

RESUMEN

Climate warming and invasive plant growth (plant invasion) may aggravate air pollution by affecting soil nitrogen (N) cycling and the emissions of reactive N gases, such as nitrous acid (HONO) and nitrogen oxides (NOx). However, little is known about the response of soil NOy (HONO + NOx) emissions and microbial functional genes to the interaction of climate warming and plant invasion. Here, we found that experimental warming (approximately 1.5 °C), but not Spartina alterniflora invasion, increased NOy emissions (0-140 ng N m-2 s-1) of treated wetland soils by 4-10 fold. Warming also decreased soil archaeal and fungal richness and diversity, shifted their community structure (e.g., decreased the archaeal classes Thermoplasmata and Iainarchaeia, and increased the archaeal genus Candidatus Nitrosoarchaeum, and the fungal classes Saccharomycetes and Tritirachiomycetes), and decreased the overall abundance of soil N cycling genes. Structural equation modeling revealed that warming-associated changes in edaphic factors and the microbial N cycling potential are responsible for the observed increase in soil NOy emissions. Collectively, the results showed that climate warming accelerates soil N cycling by stimulating large soil HONO and NOx emissions, and influences air quality by contributing to atmospheric reactive N and ozone cycling.


Asunto(s)
Suelo , Humedales , Nitrógeno , Poaceae/fisiología , Suelo/química , Microbiología del Suelo
17.
Int J Gen Med ; 14: 9913-9921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938110

RESUMEN

PURPOSE: This study was designed to explore the optimal minimum segment width (MSW) in the intensity-modulated radiotherapy (IMRT) plan for esophageal cancer. PATIENTS AND METHODS: The imaging data of 20 esophageal cancer patients were selected for this study. Four IMRT plans were designed for each patient with MSWs of 0.5, 1.0, 1.5, and 2.0 cm. The conformity index (CI) and homogeneity index (HI) of the planning target volumes (PTV), organs at risk (OARs), control points (CP), monitor units (MU), plan delivery time (DT), and gamma passing rates (GPR) were collected and compared to appraise the treatment plan quality and delivery efficiency. RESULTS: Lower-MSW plans had larger CI and smaller HI values, and lower dose parameters of OARs and PTVs. The HI, CI, and dose parameter of OARs in the 0.5 and 1.0 cm MSW groups were similar and much better than those of the 1.5 and 2.0 cm MSW groups. Meanwhile, the plan in the 0.5 cm MSW group had significantly higher MUs, CPs, and DTs, and a significantly lower relative dose of GPR with a 3% dose difference and 3 mm distance to agreement criteria than the other three groups. CONCLUSION: The 0.5 and 1 cm MSW groups had better dosimetric parameters and IMRT plan quality than the other groups. However, plans with 0.5 cm MSW had worse delivery accuracy and efficiency than the other three groups. Thus, MSW of 1.0 cm was the optimal choice to ensure good quality, delivery accuracy, and treatment efficiency in IMRT plans for esophageal cancer.

18.
World J Gastroenterol ; 27(35): 5958-5966, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34629812

RESUMEN

BACKGROUND: Endoscopic resection of duodenal subepithelial lesions (SELs) is a difficult procedure with a high risk of perforation. At present, dealing with perforation after endoscopic resection of duodenal SELs is still considered a great challenge. AIM: To evaluate the effectiveness and safety of an over-the-scope clip (OTSC) in the treatment of perforation post-endoscopic resection of duodenal SELs. METHODS: From May 2015 to November 2019, 18 patients with perforation following endoscopic resection of duodenal SELs were treated with OTSCs. Data comprising the rate of complete resection, closure of intraprocedural perforation, delayed bleeding, delayed perforation, and postoperative infection were extracted. RESULTS: The rate of complete removal of duodenal SELs and successful closure of the perforation was 100%. The median perforation size was 1 cm in diameter. Seventeen patients had minor intraoperative bleeding, while the remaining 1 patient had considerable amount of bleeding during the procedure. Seven patients had postoperative abdominal infections, of which 1 patient developed an abscess in the right iliac fossa and another patient developed septic shock. All 18 patients recovered and were discharged. No delayed bleeding or perforation was reported. The mean time taken to resume normal diet after the procedure was 6.5 d. The mean postoperative hospital stay was 9.5 d. No residual or recurrent lesions were detected during the follow-up period (15-66 mo). CONCLUSION: Closing a perforation after endoscopic resection of duodenal SELs with OTSCs seems to be an effective and reasonably safe therapeutic method.


Asunto(s)
Duodeno , Complicaciones Posoperatorias , Duodeno/cirugía , Humanos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía
19.
Technol Cancer Res Treat ; 20: 15330338211043037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34554027

RESUMEN

Background: This study aimed to analyze the difference of setup reproducibility between Vacuum-lock bag and Thermoplastic mask in the radiotherapy for breast cancer. Methods: A total of 100 invasive breast carcinoma patients were collected, among whom 50 patients were immobilized with Vacuum-lock bag (VB group), and the other 50 patients were immobilized with Thermoplastic mask (TM group). Set up reproducibility in different axes and comfort levels between two groups at three treatment progress points during the radiation therapy were collected and analyzed. Results: The linear regression model showed that fixed device was an independent factor of radiotherapy setup error (SE). Further subgroup analysis based on different axes showed that the SE caused by the fixed device was obvious in all directions. The comfort level in the VB group was significantly larger than that in the TM group at the beginning of treatment, reduced as the treatment progress going on, and finally disappeared within three weeks. Conclusions: Thermoplastic mask could significantly reduce positioning errors in the radiotherapy of breast cancer. Although more discomfort was found in the TM group, it could be eliminated as the treatment progresses.


Asunto(s)
Neoplasias de la Mama/radioterapia , Carcinoma/radioterapia , Inmovilización/instrumentación , Planificación de la Radioterapia Asistida por Computador , Errores de Configuración en Radioterapia , Adulto , Femenino , Humanos , Persona de Mediana Edad , Comodidad del Paciente , Radioterapia/instrumentación , Reproducibilidad de los Resultados
20.
Stem Cells Int ; 2021: 6930263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531915

RESUMEN

Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...