Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Psychiatry Investigation ; : 212-219, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-968565

RESUMEN

Objective@#Atomoxetine and fluoxetine are psychopharmacologic agents associated with loss of appetite and weight. Adenosine monophosphate-activated protein kinase (AMPK) is the cellular energy sensor that regulate metabolism and energy, being activated by fasting and inhibited by feeding in the hypothalamus. @*Methods@#Human brain cell lines (SH-SY5Y and U-87 MG cells) were used to study the outcome of atomoxetine and fluoxetine treatment in the activity of AMPK-acetyl-CoA carboxylase (ACC)- carnitine palmitoyl transferase 1 (CPT1) pathway and upstream regulation by calcium/calmodulin-dependent kinase kinase β (CaMKKβ) using immunoblotting and CPT1 enzymatic activity measures. @*Results@#Phosphorylation of AMPK and ACC increased significantly after atomoxetine and fluoxetine treatment in the first 30–60 minutes of treatment in the two cell lines. Activation of AMPK and inhibition of ACC was associated with an increase by 5-fold of mitochondrial CPT1 activity. Although the neuronal isoform CPT1C could be detected by immunoblotting, activity was not changed by the drug treatments. In addition, the increase in phospho-AMPK and phospho-ACC expression induced by atomoxetine was abolished by treatment with STO-609, a CaMKKβ inhibitor, indicating that AMPK-ACC-CPT1 pathway is activated through CaMKKβ phosphorylation. @*Conclusion@#These findings indicate that at the cellular level atomoxetine and fluoxetine treatments may activate AMPK-ACC-CPT1 pathways through CaMKKβ in human SH-SY5Y and U-87 MG cells.

2.
Chonnam Medical Journal ; : 185-190, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-897511

RESUMEN

Acer mono is known to contain bioactive substances that exhibit beneficial effects in osteoporosis, gastric ulcers, hepatic damage, and pathologic angiogenesis. The current study aimed to investigate the effects of Acer mono extract on the invasive activities and cell-cycle progression of human fibrosarcoma cells. Cytotoxicity of Acer mono extract was assessed by MTT assay, in-vitro invasiveness of HT1080 fibrosarcoma cells was measured using matrigel assay, expression of invasion- and cell-cycle-related proteins was analyzed by western blot analysis, and that of E2F target genes was quantified using qRT-PCR. Acer mono extract did not show distinct cytotoxicity in the experimental concentrations used. Invasiveness of HT1080 fibrosarcoma cells and expression of cyclin D1 and CDK4 in them were significantly reduced in a dose-dependent manner after treatment with Acer mono extract. Acer mono extract showed inhibitory effects on the G1/S transition during cell-cycle progression; the active phosphorylated Rb protein level was decreased, and expression of E2F target genes was downregulated by the Acer mono extract. Our data collectively demonstrated that Acer mono extract exerts inhibitory effects on the invasiveness and cell-cycle progression of HT1080 human fibrosarcoma cells.

3.
Chonnam Medical Journal ; : 185-190, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-889807

RESUMEN

Acer mono is known to contain bioactive substances that exhibit beneficial effects in osteoporosis, gastric ulcers, hepatic damage, and pathologic angiogenesis. The current study aimed to investigate the effects of Acer mono extract on the invasive activities and cell-cycle progression of human fibrosarcoma cells. Cytotoxicity of Acer mono extract was assessed by MTT assay, in-vitro invasiveness of HT1080 fibrosarcoma cells was measured using matrigel assay, expression of invasion- and cell-cycle-related proteins was analyzed by western blot analysis, and that of E2F target genes was quantified using qRT-PCR. Acer mono extract did not show distinct cytotoxicity in the experimental concentrations used. Invasiveness of HT1080 fibrosarcoma cells and expression of cyclin D1 and CDK4 in them were significantly reduced in a dose-dependent manner after treatment with Acer mono extract. Acer mono extract showed inhibitory effects on the G1/S transition during cell-cycle progression; the active phosphorylated Rb protein level was decreased, and expression of E2F target genes was downregulated by the Acer mono extract. Our data collectively demonstrated that Acer mono extract exerts inhibitory effects on the invasiveness and cell-cycle progression of HT1080 human fibrosarcoma cells.

4.
Experimental Neurobiology ; : 453-469, 2020.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-898345

RESUMEN

Major depressive disorder is a complex neuropsychiatric disorder with few treatment options. Non-targeted antidepressants have low efficacy and can induce series of side effects. While a neuropeptide, melanin-concentrating hormone (MCH), is known to exhibit regulator of affective state, no study to date has assessed the anti-depressive effects of MCH in a stress-induced depression model. This study aimed to evaluate the pharmacological effects of intranasal administration of MCH on depression-related behavior in stressed rats and mice. Using a number of behavioral tests, we found that MCH treatment significantly decreased anxiety- and depressive-like behaviors induced by stress. Notably, the effects of MCH were equivalent to those of fluoxetine. MCH treatment also restored the activity of the mammalian target of rapamycin (mTOR) signaling pathway and normalized the levels of synaptic proteins, including postsynaptic density 95, glutamate receptor 1, and synapsin 1, which were all downregulated by stress. Interestingly, the protective effects of MCH were blocked by the mTOR inhibitor, rapamycin. These results suggest that MCH exhibits antidepressant properties by modulating the mTOR pathway. Altogether, this study provides an insight into the molecular mechanisms involved in the antidepressant-like effects of MCH, thereby paving the way for the future clinical application of MCH.

5.
Artículo en 0 | WPRIM (Pacífico Occidental) | ID: wpr-835908

RESUMEN

Purpose@#The purpose of this study was to determine the effects of different intensity of aerobic exercise for four weeks on cardiovascular risk factors, reactive oxygen, and antioxidant enzymes in old mice. @*Methods@#Eighteen male C57BL/6 mice age 18 months were randomly classified into the control group (n=6), the moderate intensity exercise group (n=6), and the low intensity exercise group (n=6). The training groups performed the aerobic exercise twice daily for 20 minutes, five days weekly for four weeks. Data were analyzed using descriptive statistics, analysis of variance (ANOVA), the Chi-square test, and the Tukey’s test with the SPSSWIN 21.0 program. @*Results@#In this study, among the risk factors of cardiovascular disease, blood sugar (BS) (p=.023) and total cholesterol (TC) (p=.001) were significantly different between the moderate intensity exercise group and the control group. Additionally, there were significant differences in the reactive oxygen malondialdehyde (MDA) (p=.001), the antioxidant enzymes superoxide dismutase (SOD) (p<.001) and glutathione reductase (GR) (p=.015) between the moderate intensity exercise group and the control group. @*Conclusion@#This finding suggests that moderate intensity aerobic exercise promotes the activity of antioxidant enzymes and lowers cardiovascular risk factors in older mice.

6.
Experimental Neurobiology ; : 453-469, 2020.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-890641

RESUMEN

Major depressive disorder is a complex neuropsychiatric disorder with few treatment options. Non-targeted antidepressants have low efficacy and can induce series of side effects. While a neuropeptide, melanin-concentrating hormone (MCH), is known to exhibit regulator of affective state, no study to date has assessed the anti-depressive effects of MCH in a stress-induced depression model. This study aimed to evaluate the pharmacological effects of intranasal administration of MCH on depression-related behavior in stressed rats and mice. Using a number of behavioral tests, we found that MCH treatment significantly decreased anxiety- and depressive-like behaviors induced by stress. Notably, the effects of MCH were equivalent to those of fluoxetine. MCH treatment also restored the activity of the mammalian target of rapamycin (mTOR) signaling pathway and normalized the levels of synaptic proteins, including postsynaptic density 95, glutamate receptor 1, and synapsin 1, which were all downregulated by stress. Interestingly, the protective effects of MCH were blocked by the mTOR inhibitor, rapamycin. These results suggest that MCH exhibits antidepressant properties by modulating the mTOR pathway. Altogether, this study provides an insight into the molecular mechanisms involved in the antidepressant-like effects of MCH, thereby paving the way for the future clinical application of MCH.

7.
J Tradit Chin Med ; 39(6): 800-808, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32186150

RESUMEN

OBJECTIVE: To examine the role of KSOP1009 (a modified formulation of Suhexiang Wan essential oil) in an animal model of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection. METHODS: Cell toxicity, apoptosis, and reactive oxygen species (ROS) levels were analyzed in the human neuroblastoma cell line SH-SY5Y. After that, changes in animal behavior and tyrosine hydroxylase (TH) protein levels in the substantia nigra (SN) of MPTP-injected mice were examined. Three different doses of KSOP1009 (30, 100, and 300 mg/kg, n = 8 for each group) were administered daily for 7 d before MPTP injection and 14 d after MPTP injection, totaling 21 d. RESULTS: MPP+, the active metabolite of MPTP, decreased the viability of SH-SY5Y cells, whereas KSOP1009 alleviated MPP+-induced cytotoxicity. KSOP1009 (10 and 50 mg/mL) reduced MPP+-induced ROS generation compared with the control group. Treatment with 1 mM MPP+ increased the percentage of depolarized/live cells, whereas KSOP1009 intake at a dose of 10 mg/mL decreased the percentage of these cells. The mean latency to fall in the rotarod test was reduced in mice treated with MPTP compared with the control group. However, mice receiving three different doses of KSOP1009 performed better than MPTP-treated animals. MPTP-treated mice were more hesitant and took longer to traverse the balance beam than the control animals. In contrast, KSOP1009-treated mice performed significantly better than MPTP- treated mice. Furthermore, the KSOP1009-treated groups had a significantly higher number of TH-positive neurons in the lesioned SN and significantly higher expression of TH in the striatum than the MPTP-treated group. MPTP treatment strongly induced Jun-N-terminal kinase (JNK) activation, whereas KSOP1009 suppressed MPTP-induced JNK activation. In addition, KSOP1009 intake reversed the decrease in the phosphorylation levels of cAMP-response element-binding protein in the brain of MPTP-treated mice. KSOP1009 also restored the decrease in dopaminergic neurons and dopamine levels in the brain of MPTP-treated mice. CONCLUSION: KSOP1009 protected mice against MPTP-induced toxicity by decreasing ROS formation and restoring mitochondrial function.


Asunto(s)
Encéfalo/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
8.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-728028

RESUMEN

Decursin is a major biological active component of Angelica gigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. Recently, other reports have been commissioned to examine the anticancer activities of this plant. In this study, we evaluated the inhibitory activity and related mechanism of action of decursin against glioblastoma cell line. Decursin demonstrated cytotoxic effects on U87 and C6 glioma cells in a dose-dependent manner but not in primary glial cells. Additionally, decursin increased apoptotic bodies and phosphorylated JNK and p38 in U87 cells. Decursin also down-regulated Bcl-2 as well as cell cycle dependent proteins, CDK-4 and cyclin D1. Furthermore, decursin-induced apoptosis was dependent on the caspase activation in U87 cells. Taken together, our data provide the evidence that decursin induces apoptosis in glioblastoma cells, making it a potential candidate as a chemotherapeutic drug against brain tumor.


Asunto(s)
Angelica , Apoptosis , Neoplasias Encefálicas , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular , Ciclina D1 , Vesículas Extracelulares , Glioblastoma , Glioma , Neuroglía , Plantas , Neoplasias de la Próstata
9.
Psychiatry Investigation ; : 558-564, 2019.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-760953

RESUMEN

OBJECTIVE: Synaptic vesicle mobilization and neurite outgrowth regulation molecules were examined in modulation of effects of methylphenidate (MPH) in Spontaneous Hypertensive Rats (SHRs), a model for attention-deficit hyperactivity disorder (ADHD). METHODS: We compared the changes in the protein expression level of Cyclin dependent kinase 5 (Cdk5) and molecular substrates of Cdk5; tropomyosin receptor kinase B (TrkB), syntaxin 1A (STX1A) and synaptosomal-associated protein 25 (SNAP25). Comparisons were made in prefrontal cortex of vehicle (distilled water i.p. for 7 days)-treated SHRs, vehicle-treated Wistar Kyoto Rats (WKYs) and MPH (2 mg/kg i.p. for 7 days) treated SHRs. RESULTS: The Cdk5 level of vehicle-treated SHRs was significantly decreased compared to the Cdk5 level of vehicle-treated WKY rats, but was restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. The ratio of p25/p35 was significantly decreased in MPH-treated SHR compared to vehicle-treated SHR. Moreover, TrkB, STX1A and SNAP25 of vehicle-treated SHRs were significantly decreased compared to vehicle-treated WKY rats, but were restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. CONCLUSION: The results show that Cdk5, TrkB, STX1A, and SNAP25 were involved in the modulation of MPH effects in prefrontal cortex of SHRs and play important role in treatment of ADHD.


Asunto(s)
Animales , Ratas , Quinasa 5 Dependiente de la Ciclina , Metilfenidato , Neuritas , Fosfotransferasas , Corteza Prefrontal , Ratas Endogámicas WKY , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Vesículas Sinápticas , Proteína 25 Asociada a Sinaptosomas , Sintaxina 1 , Tropomiosina , Agua
10.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-727952

RESUMEN

Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the α-synuclein (α-syn) gene. Mutant α-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T α-synuclein (α-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the α-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo α-syn Tg mice. In the challenging beam test, the hemi and homo α-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant α-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the α-syn Tg mice. Moreover, A53T α-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T α-syn mice can be explained by downregulation of DJ-1.


Asunto(s)
Animales , Humanos , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Adhesivos , Apoptosis , Dopamina , Neuronas Dopaminérgicas , Regulación hacia Abajo , Hominidae , Ratones Transgénicos , Neuronas , Enfermedad de Parkinson , Mutación Puntual , Sinucleínas , Tirosina 3-Monooxigenasa , Ubiquitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA