Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Am J Trop Med Hyg ; 105(2): 461-471, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34125699

RESUMEN

Malaria vectors have acquired an enzyme that metabolizes pyrethroids. To tackle this problem, we evaluated long-lasting insecticidal nets incorporating piperonyl butoxide (PBO-LLINs) with a community-based cluster randomized control trial in western Kenya. The primary endpoints were anopheline density and Plasmodium falciparum polymerase chain reaction (PCR)-positive prevalence (PCRpfPR) of children aged 7 months to 10 years. Four clusters were randomly selected for each of the treatment and control arms (eight clusters in total) from 12 clusters, and PBO-LLINs and standard LLINs were distributed in February 2011 to 982 and 1,028 houses for treatment and control arms, respectively. Entomological surveys targeted 20 houses in each cluster, and epidemiological surveys targeted 150 children. Cluster-level permutation tests evaluated the effectiveness using the fitted values from individual level regression models adjusted for baseline. Bootstrapping estimated 95% confidence intervals (CIs). The medians of anophelines per house were 1.4 (interquartile range [IQR]: 2.3) and 3.4 (IQR: 3.7) in the intervention and control arms after 3 months, and 0.4 (IQR: 0.2) and 1.6 (IQR: 0.5) after 10 months, respectively. The differences were -2.5 (95% CI: -6.4 to -0.6) and -1.3 (95% CI: -2.0 to -0.7), respectively. The datasets of 861 and 775 children were analyzed in two epidemiological surveys. The median PCRpfPRs were 25% (IQR: 11%) in the intervention arm and 52% (IQR: 11%) in the control arm after 5 months and 33% (IQR: 11%) and 45% (IQR: 5%) after 12 months. The PCRpfPR ratios were 0.67 (95% CI: 0.38, 0.91) and 0.74 (95% CI: 0.53, 0.90), respectively. We confirmed the superiority of PBO-LLINs.


Asunto(s)
Mosquiteros Tratados con Insecticida , Mosquitos Vectores/efectos de los fármacos , Butóxido de Piperonilo/farmacología , Animales , Niño , Preescolar , Culicidae/efectos de los fármacos , Femenino , Humanos , Mosquiteros Tratados con Insecticida/parasitología , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas/farmacología , Kenia/epidemiología , Malaria/epidemiología , Masculino , Control de Mosquitos/métodos , Patología Molecular , Plasmodium falciparum/aislamiento & purificación , Prevalencia , Piretrinas/farmacología , Encuestas y Cuestionarios
3.
Trop Med Health ; 48(1): 98, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33372641

RESUMEN

BACKGROUND: Although long-lasting insecticidal nets (LLINs) are the most effective tool for preventing malaria parasite transmission, the nets have some limitations. For example, the increase of LLIN use has induced the rapid expansion of mosquito insecticide resistance. More than two persons often share one net, which increases the infection risk. To overcome these problems, two new mosquito nets were developed, one incorporating piperonyl butoxide and another covering ceilings and open eaves. We designed a cluster randomized controlled trial (cRCT) to evaluate these nets based on the information provided in the present preliminary study. RESULTS: Nearly 75% of the anopheline population in the study area in western Kenya was Anopheles gambiae s. l., and the remaining was Anopheles funestus s. l. More female anophelines were recorded in the western part of the study area. The number of anophelines increased with rainfall. We planned to have 80% power to detect a 50% reduction in female anophelines between the control group and each intervention group. The between-cluster coefficient of variance was 0.192. As the number of clusters was limited to 4 due to the size of the study area, the estimated cluster size was 7 spray catches with an alpha of 0.05. Of 1619 children tested, 626 (48%) were Plasmodium falciparum positive using a rapid diagnostic test (RDT). The prevalence was higher in the northwestern part of the study area. The number of children who slept under bed nets was 929 (71%). The P. falciparum RDT-positive prevalence (RDTpfPR) of net users was 45%, and that of non-users was 55% (OR 0.73; 95% CI 0.56, 0.95). Using 45% RDTpfPR of net users, we expected each intervention to reduce prevalence by 50%. The intracluster correlation coefficient was 0.053. With 80% power and an alpha of 0.05, the estimated cluster size was 116 children. Based on the distribution of children, we modified the boundaries of the clusters and established 300-m buffer zones along the boundaries to minimize a spillover effect. CONCLUSIONS: The cRCT study design is feasible. As the number of clusters is limited, we will apply a two-stage procedure with the baseline data to evaluate each intervention.

4.
Malar J ; 19(1): 373, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076928

RESUMEN

BACKGROUND: Several types of insecticides, treating technologies and materials are available for long-lasting insecticide-treated nets (LLINs). The variations may result in different efficacies against mosquitoes and correspondingly infection risks for the Plasmodium falciparum malaria parasite. This cross-sectional study investigated whether infection risk varied among children who slept under different LLIN brands in rural villages of western Kenya. METHODS: Children sleeping under various types of LLINs were tested for P. falciparum infection using a diagnostic polymerase chain reaction (PCR) assay. Data were collected for other potential factors associated with infection risk: sleeping location (with bed/without bed), number of persons sharing the same net, dwelling wall material, gap of eaves (open/close), proportional hole index, socio-economic status, and density of indoor resting anophelines. Bed-net efficacy against the Anopheles gambiae susceptible strain was estimated using the WHO cone test and the tunnel test. The residual insecticide content on nets was measured. RESULTS: Seven LLIN brands were identified, and deltamethrin-based DawaPlus® 2.0 was the most popular (48%) followed by permethrin-based Olyset® Net (28%). The former LLIN was distributed in the area about six months before the present study was conducted, and the latter net was distributed at least three years before. Of 254 children analysed, P. falciparum PCR-positive prevalence was 58% for DawaPlus® 2.0 users and 38% for Olyset® users. The multiple regression analysis revealed that the difference was statistically significant (adjusted OR: 0.67, 95% credible interval: 0.45-0.97), whereas the confounders were not statistically important. Among randomly selected net samples, all DawaPlus® 2.0 (n = 20) and 95% of Olyset® (n = 19) passed either the cone test or the tunnel test. CONCLUSIONS: Olyset® was more effective in reducing infection risk compared with DawaPlus® 2.0. Although the data from the present study were too limited to explain the mechanism clearly, the results suggest that the characteristics of the former brand are more suitable for the conditions, such as vector species composition, of the study area.


Asunto(s)
Anopheles/efectos de los fármacos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas/farmacología , Malaria Falciparum/epidemiología , Control de Mosquitos/instrumentación , Animales , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Mosquiteros Tratados con Insecticida/clasificación , Kenia/epidemiología , Masculino , Prevalencia , Población Rural
5.
Parasitology ; 146(3): 363-371, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30198452

RESUMEN

A sizeable proportion of households is forced to share single long-lasting insecticide treated net (LLIN). However, the relationship between increasing numbers of people sharing a net and the risk for Plasmodium infection is unclear. This study revealed whether risk for Plasmodium falciparum infection is associated with the number of people sharing a LLIN in a holoendemic area of Kenya. Children ⩽5 years of age were tested for P. falciparum infection using polymerase chain reaction. Of 558 children surveyed, 293 (52.5%) tested positive for parasitaemia. Four hundred and fifty-eight (82.1%) reported sleeping under a LLIN. Of those, the number of people sharing a net with the sampled child ranged from 1 to 5 (median = 2). Children using a net alone or with one other person were at lower risk than non-users (OR = 0.29, 95% CI 0.10-0.82 and OR = 0.47, 95% CI 0.22-0.97, respectively). On the other hand, there was no significant difference between non-users and children sharing a net with two (OR = 0.88, 95% CI 0.44-1.77) or more other persons (OR = 0.75, 95% CI 0.32-1.72). LLINs are effective in protecting against Plasmodium infection in children when used alone or with one other person compared with not using them. Public health professionals should inform caretakers of the risks of too many people sharing a net.


Asunto(s)
Culicidae , Composición Familiar , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria Falciparum/prevención & control , Control de Mosquitos/estadística & datos numéricos , Animales , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria Falciparum/epidemiología , Masculino , Parasitemia/epidemiología , Prevalencia , Riesgo
6.
Parasit Vectors ; 7: 63, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24517160

RESUMEN

BACKGROUND: Abundance and species composition of sympatric malaria vector species are the important factors governing transmission intensity. A widespread insecticidal bed net coverage may replace endophagic species with exophagic species. However, unique local environments also influence a vector population. This study examined the impacts of insecticidal bed nets on An. gambiae s.l populations in Mbita District and Suba District. METHODS: The species compositions of An. gambiae s.l. larvae were compared between 1997, 2009 and 2010 and between geographical areas. The abundance and species composition of An. gambiae s.l. females resting indoors were compared between 1999, 2008 and 2010 and between geographical areas. Bed net coverage was also examined temporally and spatially, and its relationships with vector abundance and species composition were examined. RESULTS: The relative abundance of An. gambiae s.s. larvae was 31.4% in 1997, decreasing to 7.5% in 2008 and 0.3% in 2010. The density of indoor resting An. gambiae s.l. females decreased by nearly 95%, and the relative abundance of An. gambiae s.s. females decreased from 90.6% to 60.7% and 72.4% in 2008 and 2010, respectively. However, the species composition of indoor resting An. gambiae s.l. females changed little in the island villages, and An. gambiae s.s. remained dominant in the western part of the study area. The density of house resting females was negatively associated with the number of bed nets in a retrospective analysis, but the effect of bed nets on species composition was not significant in both retrospective and cross-sectional analyses. CONCLUSION: An increase in bed net coverage does not necessarily replace endophilic species with exophilic species. The effect of bed nets on An. gambiae s.l. populations varies spatially, and locally unique environments are likely to influence the species composition.


Asunto(s)
Mosquiteros Tratados con Insecticida , Control de Mosquitos , Animales , Anopheles/efectos de los fármacos , Femenino , Geografía , Kenia , Larva , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión , Densidad de Población , Dinámica Poblacional
7.
Parasit Vectors ; 7: 52, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24472517

RESUMEN

BACKGROUND: Mass insecticide treated bed net (ITN) deployment, and its associated coverage of populations at risk, had "pushed" a decline in malaria transmission. However, it is unknown whether malaria control is being enhanced by zooprophylaxis, i.e., mosquitoes diverted to feed on hosts different from humans, a phenomenon that could further reduce malaria entomological transmission risk in areas where livestock herding is common. METHODS: Between May and July 2009, we collected mosquitoes in 104 houses from three neighboring villages with high ITN coverage (over 80%), along Lake Victoria. We also performed a census of livestock in the area and georeferenced tethering points for all herds, as well as, mosquito larval habitats. Bloodmeal contents from sampled mosquitoes were analyzed, and each mosquito was individually tested for malaria sporozoite infections. We then evaluated the association of human density, ITN use, livestock abundance and larval habitats with mosquito abundance, bloodfeeding on humans and malaria sporozoite rate using generalized linear mixed effects models. RESULTS: We collected a total of 8123 mosquitoes, of which 1664 were Anopheles spp. malaria vectors over 295 household spray catches. We found that vector household abundance was mainly driven by the number of householders (P < 0.05), goats/sheep tethered around the house (P < 0.05) and ITNs, which halved mosquito abundance (P < 0.05). In general, similar patterns were observed for Anopheles arabiensis, but not An. gambiae s.s. and An. funestus s.s., whose density did not increase with the presence of livestock animals. Feeding on humans significantly increased in all species with the number of householders (P < 0.05), and only significantly decreased for An. arabiensis in the presence of cattle (P < 0.05). Only 26 Anopheles spp. vectors had malaria sporozoites with the sporozoite rate significantly decreasing as the proportion of cattle feeding mosquitoes increased (P < 0.05). CONCLUSION: Our data suggest that cattle, in settings with large ITN coverage, have the potential to drive an unexpected "push-pull" malaria control system, where An. arabiensis mosquitoes "pushed" out of human contact by ITNs are likely being further "pulled" by cattle.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos , Animales , Culicidae/clasificación , Culicidae/fisiología , Conducta Alimentaria , Geografía , Humanos , Kenia , Larva , Ganado , Densidad de Población , Vigilancia en Salud Pública
8.
PLoS One ; 7(3): e32725, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22412913

RESUMEN

The prevalence of malaria among the residents of the Lake Victoria basin remains high. The environment associated with the lake may maintain a high number of malaria vectors. Lake habitats including water hyacinths have been suspected to be the source of vectors. This study investigated whether malaria vectors breed in the lake habitats and adjacent backwater pools. Anopheline larvae were collected within the littoral zone of the lake and adjacent pools located along approximately 24.3 km of the lakeshore in western Kenya, and their breeding sites characterized. Three primary vector species, Anopheles arabiensis, Anopheles gambiae s.s. and Anopheles funestus s.s., and three potential vectors, were found in the lake habitats. Unexpectedly, An. arabiensis was the most dominant vector species in the lake sampling sites. Its habitats were uncovered or covered with short grass. A potential secondary malaria vector, Anopheles rivulorum, dominated the water hyacinths in the lake. Most breeding sites in the lake were limited to areas that were surrounded by tall emergent plants, including trees, and those not exposed to waves. Nearly half of adjacent habitats were lagoons that were separated from the lake by sand bars. Lagoons contained a variety of microhabitats. Anopheles arabiensis dominated open habitats, whereas An. funestus s.s. was found mainly in vegetated habitats in lagoons. The current study confirmed that several breeding sites are associated with Lake Victoria. Given that Lake Victoria is the second largest lake in the world, the lake related habitats must be extensive; therefore, making targeted vector control difficult. Further exploration is necessary to estimate the effects of lake associated habitats on malaria transmission so as to inform a rational decision-making process for vector control.


Asunto(s)
Anopheles/parasitología , Ecosistema , Insectos Vectores , Lagos/parasitología , Malaria/transmisión , Animales , Eichhornia/parasitología , Ambiente , Kenia/epidemiología , Malaria/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...