Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
G3 (Bethesda) ; 10(7): 2297-2315, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32398236

RESUMEN

Although seed and pod traits are important for peanut breeding, little is known about the inheritance of these traits. A recombinant inbred line (RIL) population of 156 lines from a cross of Tifrunner x NC 3033 was genotyped with the Axiom_Arachis1 SNP array and SSRs to generate a genetic map composed of 1524 markers in 29 linkage groups (LG). The genetic positions of markers were compared with their physical positions on the peanut genome to confirm the validity of the linkage map and explore the distribution of recombination and potential chromosomal rearrangements. This linkage map was then used to identify Quantitative Trait Loci (QTL) for seed and pod traits that were phenotyped over three consecutive years for the purpose of developing trait-associated markers for breeding. Forty-nine QTL were identified in 14 LG for seed size index, kernel percentage, seed weight, pod weight, single-kernel, double-kernel, pod area and pod density. Twenty QTL demonstrated phenotypic variance explained (PVE) greater than 10% and eight more than 20%. Of note, seven of the eight major QTL for pod area, pod weight and seed weight (PVE >20% variance) were attributed to NC 3033 and located in a single linkage group, LG B06_1. In contrast, the most consistent QTL for kernel percentage were located on A07/B07 and derived from Tifrunner.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Mapeo Cromosómico , Ligamiento Genético , Fenotipo , Fitomejoramiento , Semillas/genética
3.
J Plant Physiol ; 231: 124-134, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30261481

RESUMEN

Drought is known to limit carbon assimilation in plants. However, it has been debated whether photosynthesis is primarily inhibited by stomatal or non-stomatal factors. This research assessed the underlying limitations to photosynthesis in peanuts (Arachis hypogaea L.) grown under progressive drought. Specifically, field-grown peanut plants were exposed to either well-watered or drought-stressed conditions during flowering. Measurements included survey measurements of gas exchange, chlorophyll fluorescence, PSII thermotolerance, pigment content, and rapid A-Ci response (RACiR) assessments. Drought significantly decreased stomatal conductance with consequent declines in photosynthesis (AN), actual quantum yield of PSII, and electron transport rate (ETR). Pigment contents were variable and depended on stress severity. Stomatal closure on stressed plants resulted in higher leaf temperatures, but Fv/Fm and PSII thermotolerance were only slightly affected by drought. A strong, hyperbolic relationship was observed between stomatal conductance, AN, and ETR. However, when RACiR analysis was conducted, drought significantly decreased AN at Ci values comparable to drought-stressed plants, indicating non-stomatal limitations to AN. The maximum rate of carboxylation and maximum electron transport rate were severely limited by drought, and chloroplast CO2 concentration (CC) declined substantially under drought along with a comparable increase in partitioning of electron flow to photorespiration. Thus, while stomatal conductance may be a viable reference indicator of water deficit stress in peanut, we conclude that declines in AN were largely due to non-stomatal (diffusional and metabolic) limitations. Additionally, this is the first study to apply the rapid A-Ci response method to peanut, with comparable results to traditional A-Ci methods.


Asunto(s)
Arachis/fisiología , Carbono/metabolismo , Estomas de Plantas/fisiología , Arachis/metabolismo , Clorofila/metabolismo , Deshidratación , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
4.
J Plant Physiol ; 199: 18-28, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27302003

RESUMEN

Temperature and drought are major abiotic limitations to crop productivity worldwide. While abiotic stress physiology research has focused primarily on fully expanded leaves, no studies have investigated photosynthetic tolerance to concurrent drought and high temperature during leaf ontogeny. To address this, Gossypium hirsutum plants were exposed to five irrigation treatments, and two different leaf stages were sampled on three dates during an abnormally dry summer. Early in the growing season, ontogenic PSII heat tolerance differences were observed. Photosystem II was more thermotolerant in young leaves than mature leaves. Later in the growing season, no decline in young leaf net photosynthesis (PN) was observed as leaf temperature increased from 31 to 37°C, as average midday leaf water potential (ΨMD) declined from -1.25 to -2.03MPa. In contrast, mature leaf PN declined 66% under the same conditions. Stomatal conductance (gs) accounted for 84-98% of variability in leaf temperature, and gs was strongly associated with ΨMD in mature leaves but not in young leaves. We conclude that young leaves are more photosynthetically tolerant to heat and drought than mature leaves. Elucidating the mechanisms causing these ontogenic differences will likely help mitigate the negative impacts of abiotic stress in the future.


Asunto(s)
Gossypium/fisiología , Fotosíntesis/fisiología , Clorofila/metabolismo , Sequías , Gossypium/anatomía & histología , Calor , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Estaciones del Año , Estrés Fisiológico , Agua/metabolismo
5.
PLoS One ; 11(1): e0146169, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26731416

RESUMEN

Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.


Asunto(s)
Aspergillus flavus/genética , Genes Mitocondriales , Variación Genética , Alelos , Reproducción/genética , Suelo , Microbiología del Suelo
6.
J Plant Physiol ; 183: 114-20, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26125121

RESUMEN

Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability.


Asunto(s)
Sequías , Gossypium/fisiología , Agua/fisiología , Flores/crecimiento & desarrollo , Georgia , Hojas de la Planta/fisiología , Distribución Aleatoria , Estaciones del Año
7.
Phytopathology ; 104(1): 75-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23883157

RESUMEN

Aspergillus flavus is the major producer of carcinogenic aflatoxins worldwide in crops. Populations of A. flavus are characterized by high genetic variation and the source of this variation is likely sexual reproduction. The fungus is heterothallic and laboratory crosses produce ascospore-bearing ascocarps embedded within sclerotia. However, the capacity for sexual reproduction in sclerotia naturally formed in crops has not been examined. Corn was grown for 3 years under different levels of drought stress at Shellman, GA, and sclerotia were recovered from 146 ears (0.6% of ears). Sclerotia of A. flavus L strain were dominant in 2010 and 2011 and sclerotia of A. flavus S strain were dominant in 2012. The incidence of S strain sclerotia in corn ears increased with decreasing water availability. Ascocarps were not detected in sclerotia at harvest but incubation of sclerotia on the surface of nonsterile soil in the laboratory resulted in the formation of viable ascospores in A. flavus L and S strains and in homothallic A. alliaceus. Ascospores were produced by section Flavi species in 6.1% of the 6,022 sclerotia (18 of 84 ears) in 2010, 0.1% of the 2,846 sclerotia (3 of 36 ears) in 2011, and 0.5% of the 3,106 sclerotia (5 of 26 ears) in 2012. For sexual reproduction to occur under field conditions, sclerotia may require an additional incubation period on soil following dispersal at crop harvest.


Asunto(s)
Aflatoxinas/metabolismo , Aspergillus flavus/fisiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/fisiología , Zea mays/microbiología , Aflatoxinas/análisis , Riego Agrícola , Aspergillus flavus/química , Aspergillus flavus/citología , Aspergillus flavus/genética , Sequías , Lluvia , Reproducción , Esporas Fúngicas/química , Esporas Fúngicas/citología , Esporas Fúngicas/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...