Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 3007-3020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37312931

RESUMEN

Background: Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods: AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results: Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion: We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.


Asunto(s)
Nanopartículas del Metal , Porfirinas , Candida albicans , Plata/farmacología , Especies Reactivas de Oxígeno , Povidona , Zinc/farmacología
2.
J Fungi (Basel) ; 8(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736039

RESUMEN

Candida albicans is the main cause of superficial candidiasis. While the antifungals available are defied by biofilm formation and resistance emergence, antimicrobial photodynamic inactivation (aPDI) arises as an alternative antifungal therapy. The tetracationic metalloporphyrin Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (ZnTnHex-2-PyP4+) has high photoefficiency and improved cellular interactions. We investigated the ZnTnHex-2-PyP4+ as a photosensitizer (PS) to photoinactivate yeasts and biofilms of C. albicans strains (ATCC 10231 and ATCC 90028) using a blue light-emitting diode. The photoinactivation of yeasts was evaluated by quantifying the colony forming units. The aPDI of ATCC 90028 biofilms was assessed by the MTT assay, propidium iodide (PI) labeling, and scanning electron microscopy. Mammalian cytotoxicity was investigated in Vero cells using MTT assay. The aPDI (4.3 J/cm2) promoted eradication of yeasts at 0.8 and 1.5 µM of PS for ATCC 10231 and ATCC 90028, respectively. At 0.8 µM and same light dose, aPDI-treated biofilms showed intense PI labeling, about 89% decrease in the cell viability, and structural alterations with reduced hyphae. No considerable toxicity was observed in mammalian cells. Our results introduce the ZnTnHex-2-PyP4+ as a promising PS to photoinactivate both yeasts and biofilms of C. albicans, stimulating studies with other Candida species and resistant isolates.

3.
Top Curr Chem (Cham) ; 379(1): 1, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33398442

RESUMEN

Quantum dots (QDs) have attracted considerable attention as fluorescent probes for life sciences. The advantages of using QDs in fluorescence-based studies include high brilliance, a narrow emission band allowing multicolor labeling, a chemically active surface for conjugation, and especially, high photostability. Despite these advantageous features, the size of the QDs prevents their free transport across the plasma membrane, limiting their use for specific labeling of intracellular structures. Over the years, various methods have been evaluated to overcome this issue to explore the full potential of the QDs. Thus, in this review, we focused our attention on physical and biochemical QD delivery methods-electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes-discussing the benefits and drawbacks of each strategy, as well as presenting recent studies in the field. We hope that this review can be a useful reference source for researches that already work or intend to work in this area. Strategies for the intracellular delivery of quantum dots discussed in this review (electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes).


Asunto(s)
Colorantes Fluorescentes/administración & dosificación , Puntos Cuánticos/administración & dosificación , Animales , Péptidos de Penetración Celular/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Electroporación/métodos , Colorantes Fluorescentes/análisis , Humanos , Liposomas/química , Microinyecciones/métodos , Puntos Cuánticos/análisis
4.
Pest Manag Sci ; 74(7): 1593-1599, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29297969

RESUMEN

BACKGROUND: Lectins, carbohydrate-binding proteins, from the bark (MuBL) and leaf (MuLL) of Myracrodruon urundeuva are termiticidal agents against Nasutitermes corniger workers and have been shown to induce oxidative stress and cell death in the midgut of these insects. In this study, we investigated the binding targets of MuBL and MuLL in the gut of N. corniger workers by determining the effects of these lectins on the activity of digestive enzymes. In addition, we used mass spectrometry to identify peptides from gut proteins that adsorbed to MuBL-Sepharose and MuLL-Sepharose columns. RESULTS: Exoglucanase activity was neutralized in the presence of MuBL and stimulated by MuLL. α-l-Arabinofuranosidase activity was not affected by MuBL but was inhibited by MuLL. Both lectins stimulated α-amylase activity and inhibited protease and trypsin-like activities. Peptides with homology to apolipophorin, trypsin-like enzyme, and ABC transporter substrate-binding protein were detected from proteins that adsorbed to MuBL-Sepharose, while peptides from proteins that bound to MuLL-Sepharose shared homology with apolipophorin. CONCLUSION: This study revealed that digestive enzymes and transport proteins found in worker guts can be recognized by MuBL and MuLL. Thus, the mechanism of their termiticidal activity may involve changes in the digestion and absorption of nutrients. © 2018 Society of Chemical Industry.


Asunto(s)
Anacardiaceae/química , Insecticidas/metabolismo , Isópteros/efectos de los fármacos , Lectinas de Plantas/metabolismo , Animales , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/enzimología , Isópteros/enzimología , Corteza de la Planta/química , Hojas de la Planta/química , Lectinas de Plantas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...