Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37905074

RESUMEN

The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR post-translational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their post-translational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding. One-Sentence Summary: Allosteric interdomain communication and its modulation are critical determinants of ABCC-transporters post-translational conformational biogenesis, misfolding, and pharmacological rescue.

2.
Nat Commun ; 14(1): 6868, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891162

RESUMEN

The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR posttranslational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their posttranslational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pliegue de Proteína , Fibrosis Quística/genética , Mutación , Retículo Endoplásmico/metabolismo
3.
Comput Struct Biotechnol J ; 20: 2587-2599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685375

RESUMEN

Cystic fibrosis (CF) is a frequent genetic disease in Caucasians that is caused by the deletion of F508 (ΔF508) in the nucleotide binding domain 1 (NBD1) of the CF transmembrane conductance regulator (CFTR). The ΔF508 compromises the folding energetics of the NBD1, as well as the folding of three other CFTR domains. Combination of FDA approved corrector molecules can efficiently but incompletely rescue the ΔF508-CFTR folding and stability defect. Thus, new pharmacophores that would reinstate the wild-type-like conformational stability of the ΔF508-NBD1 would be highly beneficial. The most prominent molecule, 5-bromoindole-3-acetic acid (BIA) that can thermally stabilize the NBD1 has low potency and efficacy. To gain insights into the NBD1 (un)folding dynamics and BIA binding site localization, we combined molecular dynamics (MD) simulations, atomic force spectroscopy (AFM) and hydrogen-deuterium exchange (HDX) experiments. We found that the NBD1 α-subdomain with three adjacent strands from the ß-subdomain plays an important role in early folding steps, when crucial non-native interactions are formed via residue F508. Our AFM and HDX experiments showed that BIA associates with this α-core region and increases the resistance of the ΔF508-NBD1 against mechanical unfolding, a phenomenon that could be exploited in future developments of folding correctors.

4.
Mol Cell ; 82(1): 44-59.e6, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34875213

RESUMEN

Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.


Asunto(s)
Proteínas de Insectos/metabolismo , Mitocondrias/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo , Tribolium/enzimología , Animales , Línea Celular Tumoral , Activación Enzimática , Estabilidad de Enzimas , Humanos , Proteínas de Insectos/genética , Cinética , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Simulación del Acoplamiento Molecular , Mutación , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Relación Estructura-Actividad , Tribolium/genética
5.
Sci Rep ; 9(1): 5504, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940883

RESUMEN

Caspase-6 is a cysteine protease that plays essential roles in programmed cell death, axonal degeneration, and development. The excess neuronal activity of Caspase-6 is associated with Alzheimer disease neuropathology and age-dependent cognitive impairment. Caspase-6 inhibition is a promising strategy to stop early stage neurodegenerative events, yet finding potent and selective Caspase-6 inhibitors has been a challenging task due to the overlapping structural and functional similarities between caspase family members. Here, we investigated how four rare non-synonymous missense single-nucleotide polymorphisms (SNPs), resulting in amino acid substitutions outside human Caspase-6 active site, affect enzyme structure and catalytic efficiency. Three investigated SNPs were found to align with a putative allosteric pocket with low sequence conservation among human caspases. Virtual screening of 57,700 compounds against the putative Caspase-6 allosteric pocket, followed by in vitro testing of the best virtual hits in recombinant human Caspase-6 activity assays identified novel allosteric Caspase-6 inhibitors with IC50 and Ki values ranging from ~2 to 13 µM. This report may pave the way towards the development and optimisation of novel small molecule allosteric Caspase-6 inhibitors and illustrates that functional characterisation of rare natural variants holds promise for the identification of allosteric sites on other therapeutic targets in drug discovery.


Asunto(s)
Caspasa 6/química , Caspasa 6/metabolismo , Inhibidores de Caspasas/farmacología , Mutación Missense , Bibliotecas de Moléculas Pequeñas/farmacología , Regulación Alostérica/efectos de los fármacos , Sustitución de Aminoácidos , Caspasa 6/genética , Inhibidores de Caspasas/química , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
6.
Methods Mol Biol ; 1873: 53-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30341603

RESUMEN

Cystic fibrosis (CF) is one of the most common, lethal autosomal recessive diseases in Caucasians with a life expectancy of 37-47 years. The CF transmembrane conductance regulator (CFTR) is a plasma membrane ion channel, confined to apical membrane of epithelia, and ensures transepithelial water and solute movement across secretory epithelia in several organs. Numerous CF mutations, including the most prevalent deletion of F508 (ΔF508) in the nucleotide binding domain 1 (NBD1) leads to CFTR global misfolding and premature intracellular degradation at the endoplasmic reticulum (ER). To better understand the misfolding mechanism caused by CF-causing point mutations in the NBD1, which is poorly understood, differential scanning fluorimetry (DSF) and hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) are the choice of techniques. These established methods can measure the conformational dynamics of the NBD1 globally and at peptide resolution level by monitoring backbone amide HDX, respectively, and will be instrumental to evaluate the mechanism of action of CF mutations and folding correctors that rescue CFTR folding defects via stabilizing the mutant NBD1.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Medición de Intercambio de Deuterio/métodos , Fluorometría/métodos , Espectrometría de Masas/métodos , Simulación de Dinámica Molecular , Mutación Puntual , Secuencia de Aminoácidos , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Expresión Génica , Humanos , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Nat Struct Mol Biol ; 25(7): 623-630, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967542

RESUMEN

Mutations in the ubiquitin ligase parkin are responsible for a familial form of Parkinson's disease. Parkin and the PINK1 kinase regulate a quality-control system for mitochondria. PINK1 phosphorylates ubiquitin on the outer membrane of damaged mitochondria, thus leading to recruitment and activation of parkin via phosphorylation of its ubiquitin-like (Ubl) domain. Here, we describe the mechanism of parkin activation by phosphorylation. The crystal structure of phosphorylated Bactrocera dorsalis (oriental fruit fly) parkin in complex with phosphorylated ubiquitin and an E2 ubiquitin-conjugating enzyme reveals that the key activating step is movement of the Ubl domain and release of the catalytic RING2 domain. Hydrogen/deuterium exchange and NMR experiments with the various intermediates in the activation pathway confirm and extend the interpretation of the crystal structure to mammalian parkin. Our results rationalize previously unexplained Parkinson's disease mutations and the presence of internal linkers that allow large domain movements in parkin.


Asunto(s)
Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cristalografía por Rayos X , Activación Enzimática , Humanos , Proteínas de Insectos/genética , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Tephritidae/genética , Tephritidae/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
Nat Struct Mol Biol ; 25(8): 744, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30026521

RESUMEN

In the version of this article initially published, RING2 in the schematic to the left in Fig. 1b was mislabeled as RING0. The error has been corrected in the HTML and PDF versions of the article.

9.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29475881

RESUMEN

Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin.


Asunto(s)
Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Animales , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Biológicos , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Ratas , Serina/química , Serina/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitinación , Dominios Homologos src
10.
J Biol Chem ; 292(27): 11499-11507, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28490633

RESUMEN

The enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates quality control of glycoproteins in the endoplasmic reticulum by attaching glucose to N-linked glycan of misfolded proteins. As a sensor, UGGT ensures that misfolded proteins are recognized by the lectin chaperones and do not leave the secretory pathway. The structure of UGGT and the mechanism of its selectivity for misfolded proteins have been unknown for 25 years. Here, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the structure of UGGT from Drosophila melanogaster at 18-Å resolution. Three-dimensional reconstructions revealed a cage-like structure with a large central cavity. Particle classification revealed flexibility that precluded determination of a high-resolution structure. Introduction of biotinylation sites into a fungal UGGT expressed in Escherichia coli allowed identification of the catalytic and first thioredoxin-like domains. We also used hydrogen-deuterium exchange mass spectrometry to map the binding site of an accessory protein, Sep15, to the first thioredoxin-like domain. The UGGT structural features identified suggest that the central cavity contains the catalytic site and is lined with hydrophobic surfaces. This enhances the binding of misfolded substrates with exposed hydrophobic residues and excludes folded proteins with hydrophilic surfaces. In conclusion, we have determined the UGGT structure, which enabled us to develop a plausible functional model of the mechanism for UGGT's selectivity for misfolded glycoproteins.


Asunto(s)
Glucosiltransferasas/química , Pliegue de Proteína , Azúcares de Uridina Difosfato/química , Animales , Medición de Intercambio de Deuterio , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA