Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Chem Res Toxicol ; 37(8): 1290-1305, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38981058

RESUMEN

Drug-induced liver injury (DILI) has been a significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. Over the last decade, the existing suite of in vitro proxy-DILI assays has generally improved at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing the in silico prediction of DILI because it allows for evaluating large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects. In this study, we aim to study ML models for DILI prediction that first predict nine proxy-DILI labels and then use them as features in addition to chemical structural features to predict DILI. The features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, in vivo (e.g., preclinical rat hepatotoxicity studies) data, pharmacokinetic parameters of maximum concentration, structural fingerprints, and physicochemical parameters. We trained DILI-prediction models on 888 compounds from the DILI data set (composed of DILIst and DILIrank) and tested them on a held-out external test set of 223 compounds from the DILI data set. The best model, DILIPredictor, attained an AUC-PR of 0.79. This model enabled the detection of the top 25 toxic compounds (2.68 LR+, positive likelihood ratio) compared to models using only structural features (1.65 LR+ score). Using feature interpretation from DILIPredictor, we identified the chemical substructures causing DILI and differentiated cases of DILI caused by compounds in animals but not in humans. For example, DILIPredictor correctly recognized 2-butoxyethanol as nontoxic in humans despite its hepatotoxicity in mice models. Overall, the DILIPredictor model improves the detection of compounds causing DILI with an improved differentiation between animal and human sensitivity and the potential for mechanism evaluation. DILIPredictor required only chemical structures as input for prediction and is publicly available at https://broad.io/DILIPredictor for use via web interface and with all code available for download.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Animales , Ratas
2.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895462

RESUMEN

Drug-induced liver injury (DILI) has been significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. The existing suite of in vitro proxy-DILI assays is generally effective at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing in silico prediction of DILI because it allows for the evaluation of large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects. In this study, we aim to study ML models for DILI prediction that first predicts nine proxy-DILI labels and then uses them as features in addition to chemical structural features to predict DILI. The features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, in vivo (e.g., preclinical rat hepatotoxicity studies) data, pharmacokinetic parameters of maximum concentration, structural fingerprints, and physicochemical parameters. We trained DILI-prediction models on 888 compounds from the DILIst dataset and tested on a held-out external test set of 223 compounds from DILIst dataset. The best model, DILIPredictor, attained an AUC-ROC of 0.79. This model enabled the detection of top 25 toxic compounds compared to models using only structural features (2.68 LR+ score). Using feature interpretation from DILIPredictor, we were able to identify the chemical substructures causing DILI as well as differentiate cases DILI is caused by compounds in animals but not in humans. For example, DILIPredictor correctly recognized 2-butoxyethanol as non-toxic in humans despite its hepatotoxicity in mice models. Overall, the DILIPredictor model improves the detection of compounds causing DILI with an improved differentiation between animal and human sensitivity as well as the potential for mechanism evaluation. DILIPredictor is publicly available at https://broad.io/DILIPredictor for use via web interface and with all code available for download and local implementation via https://pypi.org/project/dilipred/.

3.
J Cheminform ; 16(1): 75, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943219

RESUMEN

Conformal prediction has seen many applications in pharmaceutical science, being able to calibrate outputs of machine learning models and producing valid prediction intervals. We here present the open source software CPSign that is a complete implementation of conformal prediction for cheminformatics modeling. CPSign implements inductive and transductive conformal prediction for classification and regression, and probabilistic prediction with the Venn-ABERS methodology. The main chemical representation is signatures but other types of descriptors are also supported. The main modeling methodology is support vector machines (SVMs), but additional modeling methods are supported via an extension mechanism, e.g. DeepLearning4J models. We also describe features for visualizing results from conformal models including calibration and efficiency plots, as well as features to publish predictive models as REST services. We compare CPSign against other common cheminformatics modeling approaches including random forest, and a directed message-passing neural network. The results show that CPSign produces robust predictive performance with comparative predictive efficiency, with superior runtime and lower hardware requirements compared to neural network based models. CPSign has been used in several studies and is in production-use in multiple organizations. The ability to work directly with chemical input files, perform descriptor calculation and modeling with SVM in the conformal prediction framework, with a single software package having a low footprint and fast execution time makes CPSign a convenient and yet flexible package for training, deploying, and predicting on chemical data. CPSign can be downloaded from GitHub at https://github.com/arosbio/cpsign .Scientific contribution CPSign provides a single software that allows users to perform data preprocessing, modeling and make predictions directly on chemical structures, using conformal and probabilistic prediction. Building and evaluating new models can be achieved at a high abstraction level, without sacrificing flexibility and predictive performance-showcased with a method evaluation against contemporary modeling approaches, where CPSign performs on par with a state-of-the-art deep learning based model.

4.
Curr Opin Struct Biol ; 87: 102842, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797109

RESUMEN

Artificial intelligence (AI) and high-content imaging (HCI) are contributing to advancements in drug discovery, propelled by the recent progress in deep neural networks. This review highlights AI's role in analysis of HCI data from fixed and live-cell imaging, enabling novel label-free and multi-channel fluorescent screening methods, and improving compound profiling. HCI experiments are rapid and cost-effective, facilitating large data set accumulation for AI model training. However, the success of AI in drug discovery also depends on high-quality data, reproducible experiments, and robust validation to ensure model performance. Despite challenges like the need for annotated compounds and managing vast image data, AI's potential in phenotypic screening and drug profiling is significant. Future improvements in AI, including increased interpretability and integration of multiple modalities, are expected to solidify AI and HCI's role in drug discovery.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Humanos
5.
ArXiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38745696

RESUMEN

High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other -omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.

6.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766203

RESUMEN

High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other - omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.

7.
Front Toxicol ; 6: 1359507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742231

RESUMEN

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

9.
J Chem Inf Model ; 64(4): 1172-1186, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38300851

RESUMEN

Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of chemical and biological data to predict cardiotoxicity, using the recently released DICTrank data set from the United States FDA. We found that such data, including protein targets, especially those related to ion channels (e.g., hERG), physicochemical properties (e.g., electrotopological state), and peak concentration in plasma offer strong predictive ability for DICT. Compounds annotated with mechanisms of action such as cyclooxygenase inhibition could distinguish between most-concern and no-concern DICT. Cell Painting features for ER stress discerned most-concern cardiotoxic from nontoxic compounds. Models based on physicochemical properties provided substantial predictive accuracy (AUCPR = 0.93). With the availability of omics data in the future, using biological data promises enhanced predictability and deeper mechanistic insights, paving the way for safer drug development. All models from this study are available at https://broad.io/DICTrank_Predictor.


Asunto(s)
Cardiotoxicidad , Desarrollo de Medicamentos , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo
10.
Mol Biol Cell ; 35(3): mr2, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170589

RESUMEN

Cell Painting assays generate morphological profiles that are versatile descriptors of biological systems and have been used to predict in vitro and in vivo drug effects. However, Cell Painting features extracted from classical software such as CellProfiler are based on statistical calculations and often not readily biologically interpretable. In this study, we propose a new feature space, which we call BioMorph, that maps these Cell Painting features with readouts from comprehensive Cell Health assays. We validated that the resulting BioMorph space effectively connected compounds not only with the morphological features associated with their bioactivity but with deeper insights into phenotypic characteristics and cellular processes associated with the given bioactivity. The BioMorph space revealed the mechanism of action for individual compounds, including dual-acting compounds such as emetine, an inhibitor of both protein synthesis and DNA replication. Overall, BioMorph space offers a biologically relevant way to interpret the cell morphological features derived using software such as CellProfiler and to generate hypotheses for experimental validation.


Asunto(s)
Replicación del ADN , Programas Informáticos , Fenotipo
11.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37905146

RESUMEN

Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of various chemical and biological data to predict cardiotoxicity, using the recently released Drug-Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a diverse set of data sources, including physicochemical properties, annotated mechanisms of action (MOA), Cell Painting, Gene Expression, and more, to identify indications of cardiotoxicity. We found that such data, including protein targets, especially those related to ion channels (such as hERG), physicochemical properties (such as electrotopological state) as well as peak concentration in plasma offer strong predictive ability as well as valuable insights into DICT. We also found compounds annotated with particular mechanisms of action, such as cyclooxygenase inhibition, could distinguish between most-concern and no-concern DICT compounds. Cell Painting features related to ER stress discern the most-concern cardiotoxic compounds from non-toxic compounds. While models based on physicochemical properties currently provide substantial predictive accuracy (AUCPR = 0.93), this study also underscores the potential benefits of incorporating more comprehensive biological data in future DICT predictive models. With the availability of - omics data in the future, using biological data promises enhanced predictability and delivers deeper mechanistic insights, paving the way for safer therapeutic drug development. All models and data used in this study are publicly released at https://broad.io/DICTrank_Predictor.

13.
Front Toxicol ; 5: 1212509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456981

RESUMEN

In past times, the analysis of endocrine disrupting properties of chemicals has mainly been focused on (anti-)estrogenic or (anti-)androgenic properties, as well as on aspects of steroidogenesis and the modulation of thyroid signaling. More recently, disruption of energy metabolism and related signaling pathways by exogenous substances, so-called metabolism-disrupting chemicals (MDCs) have come into focus. While general effects such as body and organ weight changes are routinely monitored in animal studies, there is a clear lack of mechanistic test systems to determine and characterize the metabolism-disrupting potential of chemicals. In order to contribute to filling this gap, one of the project within EU-funded Partnership for the Assessment of Risks of Chemicals (PARC) aims at developing novel in vitro methods for the detection of endocrine metabolic disruptors. Efforts will comprise projects related to specific signaling pathways, for example, involving mTOR or xenobiotic-sensing nuclear receptors, studies on hepatocytes, adipocytes and pancreatic beta cells covering metabolic and morphological endpoints, as well as metabolism-related zebrafish-based tests as an alternative to classic rodent bioassays. This paper provides an overview of the approaches and methods of these PARC projects and how this will contribute to the improvement of the toxicological toolbox to identify substances with endocrine disrupting properties and to decipher their mechanisms of action.

14.
PLoS Comput Biol ; 19(7): e1011323, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37490493

RESUMEN

Fluorescence staining techniques, such as Cell Painting, together with fluorescence microscopy have proven invaluable for visualizing and quantifying the effects that drugs and other perturbations have on cultured cells. However, fluorescence microscopy is expensive, time-consuming, labor-intensive, and the stains applied can be cytotoxic, interfering with the activity under study. The simplest form of microscopy, brightfield microscopy, lacks these downsides, but the images produced have low contrast and the cellular compartments are difficult to discern. Nevertheless, by harnessing deep learning, these brightfield images may still be sufficient for various predictive purposes. In this study, we compared the predictive performance of models trained on fluorescence images to those trained on brightfield images for predicting the mechanism of action (MoA) of different drugs. We also extracted CellProfiler features from the fluorescence images and used them to benchmark the performance. Overall, we found comparable and largely correlated predictive performance for the two imaging modalities. This is promising for future studies of MoAs in time-lapse experiments for which using fluorescence images is problematic. Explorations based on explainable AI techniques also provided valuable insights regarding compounds that were better predicted by one modality over the other.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , Células Cultivadas , Procesamiento de Imagen Asistido por Computador/métodos
15.
iScience ; 26(6): 106906, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37332601

RESUMEN

Progressive multiple sclerosis (PMS) is currently diagnosed retrospectively. Here, we work toward a set of biomarkers that could assist in early diagnosis of PMS. A selection of cerebrospinal fluid metabolites (n = 15) was shown to differentiate between PMS and its preceding phenotype in an independent cohort (AUC = 0.93). Complementing the classifier with conformal prediction showed that highly confident predictions could be made, and that three out of eight patients developing PMS within three years of sample collection were predicted as PMS at that time point. Finally, this methodology was applied to PMS patients as part of a clinical trial for intrathecal treatment with rituximab. The methodology showed that 68% of the patients decreased their similarity to the PMS phenotype one year after treatment. In conclusion, the inclusion of confidence predictors contributes with more information compared to traditional machine learning, and this information is relevant for disease monitoring.

16.
J Cheminform ; 15(1): 56, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268960

RESUMEN

The applicability domain of machine learning models trained on structural fingerprints for the prediction of biological endpoints is often limited by the lack of diversity of chemical space of the training data. In this work, we developed similarity-based merger models which combined the outputs of individual models trained on cell morphology (based on Cell Painting) and chemical structure (based on chemical fingerprints) and the structural and morphological similarities of the compounds in the test dataset to compounds in the training dataset. We applied these similarity-based merger models using logistic regression models on the predictions and similarities as features and predicted assay hit calls of 177 assays from ChEMBL, PubChem and the Broad Institute (where the required Cell Painting annotations were available). We found that the similarity-based merger models outperformed other models with an additional 20% assays (79 out of 177 assays) with an AUC > 0.70 compared with 65 out of 177 assays using structural models and 50 out of 177 assays using Cell Painting models. Our results demonstrated that similarity-based merger models combining structure and cell morphology models can more accurately predict a wide range of biological assay outcomes and further expanded the applicability domain by better extrapolating to new structural and morphology spaces.

17.
Altern Lab Anim ; 51(1): 39-54, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36572567

RESUMEN

There is an ongoing aim to replace animal and in vitro laboratory models with in silico methods. Such replacement requires the successful validation and comparably good performance of the alternative methods. We have developed an in silico prediction system for human clinical pharmacokinetics, based on machine learning, conformal prediction and a new physiologically-based pharmacokinetic model, i.e. ANDROMEDA. The objectives of this study were: a) to evaluate how well ANDROMEDA predicts the human clinical pharmacokinetics of a previously proposed benchmarking data set comprising 24 physicochemically diverse drugs and 28 small drug molecules new to the market in 2021; b) to compare its predictive performance with that of laboratory methods; and c) to investigate and describe the pharmacokinetic characteristics of the modern drugs. Median and maximum prediction errors for the selected major parameters were ca 1.2 to 2.5-fold and 16-fold for both data sets, respectively. Prediction accuracy was on par with, or better than, the best laboratory-based prediction methods (superior performance for a vast majority of the comparisons), and the prediction range was considerably broader. The modern drugs have higher average molecular weight than those in the benchmarking set from 15 years earlier (ca 200 g/mol higher), and were predicted to (generally) have relatively complex pharmacokinetics, including permeability and dissolution limitations and significant renal, biliary and/or gut-wall elimination. In conclusion, the results were overall better than those obtained with laboratory methods, and thus serve to further validate the ANDROMEDA in silico system for the prediction of human clinical pharmacokinetics of modern and physicochemically diverse drugs.


Asunto(s)
Benchmarking , Modelos Biológicos , Animales , Humanos , Permeabilidad , Farmacocinética , Preparaciones Farmacéuticas , Simulación por Computador
18.
Nat Commun ; 13(1): 7761, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522311

RESUMEN

Unreliable predictions can occur when an artificial intelligence (AI) system is presented with data it has not been exposed to during training. We demonstrate the use of conformal prediction to detect unreliable predictions, using histopathological diagnosis and grading of prostate biopsies as example. We digitized 7788 prostate biopsies from 1192 men in the STHLM3 diagnostic study, used for training, and 3059 biopsies from 676 men used for testing. With conformal prediction, 1 in 794 (0.1%) predictions is incorrect for cancer diagnosis (compared to 14 errors [2%] without conformal prediction) while 175 (22%) of the predictions are flagged as unreliable when the AI-system is presented with new data from the same lab and scanner that it was trained on. Conformal prediction could with small samples (N = 49 for external scanner, N = 10 for external lab and scanner, and N = 12 for external lab, scanner and pathology assessment) detect systematic differences in external data leading to worse predictive performance. The AI-system with conformal prediction commits 3 (2%) errors for cancer detection in cases of atypical prostate tissue compared to 44 (25%) without conformal prediction, while the system flags 143 (80%) unreliable predictions. We conclude that conformal prediction can increase patient safety of AI-systems.


Asunto(s)
Inteligencia Artificial , Neoplasias , Masculino , Humanos , Incertidumbre , Próstata , Biopsia
20.
Commun Biol ; 5(1): 858, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999457

RESUMEN

Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy and applicability domain to the chemical space of the training compounds. In this work, we aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We combined Cell Painting and Gene Expression data with chemical structural information from Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial membrane depolarization assay. We observed that mitochondrial toxicants differ from non-toxic compounds in morphological space and identified compound clusters having similar mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides biological insights related to mechanisms of action of this endpoint. We further showed that models combining Cell Painting, Gene Expression features and Morgan fingerprints improved model performance on an external test set of 244 compounds by 60% (in terms of F1 score) and improved extrapolation to new chemical space. The performance of our combined models was comparable with dedicated in vitro assays for mitochondrial toxicity. Our results suggest that combining chemical descriptors with biological readouts enhances the detection of mitochondrial toxicants, with practical implications in drug discovery.


Asunto(s)
Bioensayo , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...