Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39053578

RESUMEN

BACKGROUND: The anterior limb of the internal capsule (ALIC) is a white matter structure connecting the prefrontal cortex (PFC) to the brainstem, thalamus, and subthalamic nucleus. It is a target for deep brain stimulation (DBS) for obsessive-compulsive disorder. There is strong interest in improving DBS targeting by using diffusion tractography to reconstruct and target specific ALIC fiber pathways, but this methodology is susceptible to errors and lacks validation. To address these limitations, we developed a novel diffusion tractography pipeline that generates reliable and biologically validated ALIC white matter reconstructions. METHODS: Following algorithm development and refinement, we analyzed 43 control subjects each with 2 sets of 3T MRI data and a subset of 5 controls with 7T data from the Human Connectome Project. We generated 22 segmented ALIC fiber bundles (11 per hemisphere) based on prefrontal PFC regions of interest, and we analyzed the relationships among bundles. RESULTS: We successfully reproduced the topographies established by prior anatomical work using images acquired at both 3T and 7T. Quantitative assessment demonstrated significantly smaller intra-subject variability relative to inter-subject variability for both test and retest groups across all but one PFC region. We examined the overlap between fibers from different PFC regions and a response tract for obsessive-compulsive disorder deep brain stimulation, and we reconstructed the PFC hyperdirect pathway using a modified version of our pipeline. DISCUSSION: Our dMRI algorithm reliably generates biologically validated ALIC white matter reconstructions, allowing for more precise modelling of fibers for neuromodulation therapies.

2.
Front Hum Neurosci ; 18: 1324710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439939

RESUMEN

The thalamus is a centrally located and heterogeneous brain structure that plays a critical role in various sensory, motor, and cognitive processes. However, visualizing the individual subnuclei of the thalamus using conventional MRI techniques is challenging. This difficulty has posed obstacles in targeting specific subnuclei for clinical interventions such as deep brain stimulation (DBS). In this paper, we present DiMANI, a novel method for directly visualizing the thalamic subnuclei using diffusion MRI (dMRI). The DiMANI contrast is computed by averaging, voxelwise, diffusion-weighted volumes enabling the direct distinction of thalamic subnuclei in individuals. We evaluated the reproducibility of DiMANI through multiple approaches. First, we utilized a unique dataset comprising 8 scans of a single participant collected over a 3-year period. Secondly, we quantitatively assessed manual segmentations of thalamic subnuclei for both intra-rater and inter-rater reliability. Thirdly, we qualitatively correlated DiMANI imaging data from several patients with Essential Tremor with the localization of implanted DBS electrodes and clinical observations. Lastly, we demonstrated that DiMANI can provide similar features at 3T and 7T MRI, using varying numbers of diffusion directions. Our results establish that DiMANI is a reproducible and clinically relevant method to directly visualize thalamic subnuclei. This has significant implications for the development of new DBS targets and the optimization of DBS therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...