Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geobiology ; 15(6): 767-783, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28856796

RESUMEN

The diversification of macro-organisms over the last 500 million years often coincided with the development of new environmental niches. Microbial diversification over the last 4 billion years likely followed similar patterns. However, linkages between environmental settings and microbial ecology have so far not been described from the ancient rock record. In this study, we investigated carbon, nitrogen, and molybdenum isotopes, and iron speciation in five non-marine stratigraphic units of the Neoarchean Fortescue Group, Western Australia, that are similar in age (2.78-2.72 Ga) but differ in their hydro-geologic setting. Our data suggest that the felsic-dominated and hydrologically open lakes of the Bellary and Hardey formations were probably dominated by methanogenesis (δ13 Corg  = -38.7 ± 4.2‰) and biologic N2 fixation (δ15 Nbulk  =-0.6 ± 1.0‰), whereas the Mt. Roe, Tumbiana and Kylena Formations, with more mafic siliciclastic sediments, preserve evidence of methanotrophy (δ13 Corg as low as -57.4‰, δ13 Ccarb as low as -9.2‰) and NH3 loss under alkaline conditions. Evidence of oxygenic photosynthesis is recorded only in the closed evaporitic Tumbiana lakes marked by abundant stromatolites, limited evidence of Fe and S cycling, fractionated Mo isotopes (δ98/95 Mo = +0.4 ± 0.4‰), and the widest range in δ13 Corg (-57‰ to -15‰), suggesting oxidative processes and multiple carbon fixation pathways. Methanotrophy in the three mafic settings was probably coupled to a combination of oxidants, including O2 and SO42- . Overall, our results may indicate that early microbial evolution on the Precambrian Earth was in part influenced by geological parameters. We speculate that expanding habitats, such as those linked to continental growth, may have been an important factor in the evolution of life.


Asunto(s)
Evolución Biológica , Cianobacterias/metabolismo , Sedimentos Geológicos/química , Lagos/química , Ecosistema , Paleontología , Australia Occidental
2.
Astrobiology ; 16(12): 949-963, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27905827

RESUMEN

Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric oxygenation could have initiated a stepwise pN2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.


Asunto(s)
Atmósfera , Clima , Exobiología , Geología , Modelos Teóricos , Nitrógeno/análisis , Aerobiosis , Anaerobiosis , Carbono/análisis , Planeta Tierra , Factores de Tiempo
3.
Geobiology ; 11(2): 101-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23331348

RESUMEN

Many decades of experimental and theoretical research on the origin of life have yielded important discoveries regarding the chemical and physical conditions under which organic compounds can be synthesized and polymerized. However, such conditions often seem mutually exclusive, because they are rarely encountered in a single environmental setting. As such, no convincing models explain how living cells formed from abiotic constituents. Here, we propose a new approach that considers the origin of life within the global context of the Hadean Earth. We review previous ideas and synthesize them in four central hypotheses: (i) Multiple microenvironments contributed to the building blocks of life, and these niches were not necessarily inhabitable by the first organisms; (ii) Mineral catalysts were the backbone of prebiotic reaction networks that led to modern metabolism; (iii) Multiple local and global transport processes were essential for linking reactions occurring in separate locations; (iv) Global diversity and local selection of reactants and products provided mechanisms for the generation of most of the diverse building blocks necessary for life. We conclude that no single environmental setting can offer enough chemical and physical diversity for life to originate. Instead, any plausible model for the origin of life must acknowledge the geological complexity and diversity of the Hadean Earth. Future research may therefore benefit from identifying further linkages between organic precursors, minerals, and fluids in various environmental contexts.


Asunto(s)
Fenómenos Químicos , Fenómenos Geológicos , Compuestos Inorgánicos/metabolismo , Compuestos Orgánicos/metabolismo , Origen de la Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA