Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950389

RESUMEN

BACKGROUND AND AIMS: Chronic liver disease leads to ~2 million deaths annually. Cyclic AMP (cAMP) signaling has long been studied in liver injury, particularly in the regulation of fatty acid (FA) ß-oxidation and pro-inflammatory polarization of tissue-resident lymphocytes. Phosphodiesterase 4B inhibition has been explored as a therapeutic modality, but these drugs have had limited success and are known to cause significant adverse effects. The PDE4 inhibitor 2-(4-([2-(5-Chlorothiophen-2-yl)-5-ethyl-6-methylpyrimidin-4-yl]amino)phenyl)acetic acid) (known as A-33) has yet to be explored for the treatment of metabolic diseases. APPROACH AND RESULTS: Herein, we evaluated the efficacy of A-33 in the treatment of animal models of alcohol-associated liver disease and steatotic liver disease. We demonstrated that A-33 effectively ameliorated the signs and symptoms of chronic liver disease, resulting in significant decreases in serum alanine aminotransferase and aspartate aminotransferase levels, decreased overall fat and collagen deposition in the liver, decreased intrahepatic triglyceride concentrations, and normalized expression of genes related to ß-oxidation of fatty acids, inflammation, and extracellular matrix deposition. We also designed and synthesized a novel analog of A-33, termed MDL3, which inhibited both phosphodiesterase 4B and PDE5A and was more effective in ameliorating pathophysiological signs and symptoms of liver injury and inflammation. In addition, MDL3 re-sensitized obese mice to glucose and significantly inhibited the pathological remodeling of adipose tissue, which was not observed with A-33 administration. CONCLUSIONS: In conclusion, we synthesized and demonstrated that MDL3, a novel phosphodiesterase 4B and PDE5A inhibitor, presents a promising avenue of exploration for treating chronic liver disease.

2.
Expert Opin Ther Targets ; : 1-29, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38878273

RESUMEN

INTRODUCTION: Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED: To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION: This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.

3.
Cell Death Discov ; 10(1): 158, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553450

RESUMEN

Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to excessive toxicity. ONC201 is a dual PI3K/AKT and MEK pathway inhibitor with an excellent safety profile that targets death receptor 5 (DR5) to induce apoptosis. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable and can be stabilized by a prodrug approach. In this study, phospho-Akt, phospho-mTOR, and phospho-ERK protein expressions were evaluated in patient PDAC-tissues (n = 10). We used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. Further, we evaluated the efficacy of L_GEM and ONC201 in PC cells and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. PDAC patient tissues showed significantly higher levels of p-AKT (Ser473), p-ERK (T202/T204), and p-mTOR compared to surrounding non-cancerous tissues. ONC201 in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. In our in-vivo study, we found that ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade to overcome chemoresistance and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate the effect of GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.

4.
Biomaterials ; 295: 122049, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36827892

RESUMEN

Alcohol-associated liver disease (ALD) and its complications are significant health problems worldwide. Several pathways in ALD are influenced by alcohol that drives inflammation, fatty acid metabolism, and fibrosis. Although miR-96 has become a key regulator in several liver diseases, its function in ALD remains unclear. In contrast, sonic hedgehog (SHH) signaling has a well-defined role in liver disease through influencing the activation of hepatic stellate cells (HSCs) and the inducement of liver fibrosis. In this study, we investigated the expression patterns of miR-96 and Hh molecules in mouse and human liver samples. We showed that miR-96 and Shh were upregulated in ethanol-fed mice. Furthermore, alcoholic hepatitis (AH) patient specimens also showed upregulated FOXO3a, TGF-ß1, SHH, and GLI2 proteins. We then examined the effects of Hh inhibitor MDB5 and anti-miR-96 on inflammatory and extracellular matrix (ECM)-related genes. We identified FOXO3 and SMAD7 as direct target genes of miR-96. Inhibition of miR-96 decreased the expression of these genes in vitro in AML12 cells, HSC-T6 cells, and in vivo in ALD mice. Furthermore, MDB5 decreased HSCs activation and the expression of ECM-related genes, such as Gli1, Tgf-ß1, and collagen. Lipid nanoparticles (LNPs) loaded with the combination of MDB5, and anti-miR-96 ameliorated ALD in mice. Our study demonstrated that this combination therapy could serve as a new therapeutic target for ALD.


Asunto(s)
MicroARNs , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Ratones , Antagomirs/farmacología , Etanol/efectos adversos , Proteínas Hedgehog/metabolismo , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...