Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochem Med (Zagreb) ; 33(2): 020601, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37143715

RESUMEN

Clinical laboratory practice represents an essential part of clinical decision-making, as it influences 60-70% of medical decisions at all levels of health care. Results of biochemical laboratory tests (BLTs) have a key role in establishment of adequate diagnosis as well as in evaluation of treatment progress and outcome. The prevalence of drug-laboratory test interactions (DLTIs) is up to 43% of patients who had laboratory results influenced by drugs. Unrecognized DLTIs may lead to misinterpreted BLTs results, incorrect or delayed diagnosis, extra costs for unnecessary additional tests or inadequate therapy, as all may cause false clinical decisions. The significance of timely and adequate recognition of DLTIs is to prevent common clinical consequences such as incorrectly interpreted test results, delayed or non-treated condition due to erroneous diagnosis or unnecessary extra tests or therapy. Medical professionals should be educated that it is essential to obtain patient data about medications especially for the drugs used in the last 10 days before biological material collection. Our mini-review aims to provide a comprehensive overview of the current state in this important domain of medical biochemistry with detailed analysis of the effect of drugs on BLTs and to give detailed information to medical specialists.

2.
Ther Deliv ; 14(1): 17-29, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36919692

RESUMEN

Aim: Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Materials & methods: Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA. The two groups' survival plot, blood glucose, and inflammation and bile acid profiles were analyzed. Results & conclusion: UDCA-nano gel enhanced survival, glycemia and normalized bile acids' profile, which suggests improved islets functions and potential adjunct treatment for insulin therapy.


In this study, we explore the delivery of insulin producing cells that may benefit those with Type 1 diabetes. Cells were delivered to mice in a protective matrix. The matrix contained unique components, such as bile acids, that allowed for sustained reduction in glucose levels. This process may represent a novel diabetes treatment that could be an alternative to traditional insulin therapies.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Ratones , Animales , Ácidos y Sales Biliares/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/cirugía , Diabetes Mellitus Experimental/tratamiento farmacológico , Insulina/uso terapéutico , Trasplante de Islotes Pancreáticos/métodos , Glucemia
3.
Anticancer Agents Med Chem ; 22(7): 1407-1413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34102994

RESUMEN

BACKGROUND: Urokinase-type plasminogen activator (uPA) system is a crucial pathway for tumor invasion and metastasis. Recently, multiple anticancer effects of quercetin have been described, including inhibitory activity against uPA. However, the clinical use of this flavonoid has been limited due to its low oral bioavailability. OBJECTIVE: The objectives of the study were to assess the antimetastatic potential of quercetin analogues by analyzing their binding affinity for uPA, and to select the compounds with improved pharmacological profiles. METHODS: Binding affinities of structural analogues of quercetin to uPA receptor were determined by molecular docking analysis using Molegro Virtual Docker software, and molecular descriptors relevant for estimating pharmacological profile were calculated from ligand structures using computational models. RESULTS: Among 44 quercetin analogues, only one quercetin analogue (3,6,2',4',5'-pentahydroxyflavone) was found to possess higher aqueous solubility and membrane permeability, and stronger affinity for uPA than quercetin, which makes it a potential lead compound for anticancer drug development. Like quercetin, this compound has five hydroxyl groups, but arranged differently, which contributes to the higher aqueous solubility and higher amphiphilic moment in comparison to quercetin. Since membrane permeability is not recognized as the limiting factor for quercetin absorption, analogues with higher aqueous solubility and retained or stronger uPA inhibitory activity should also be further experimentally validated for potential therapeutic use. CONCLUSION: Identified quercetin analogues with better physicochemical and pharmacological properties have a high potential to succeed in later stages of research in biological systems as potential anticancer agents with antimetastatic activity.


Asunto(s)
Quercetina , Activador de Plasminógeno de Tipo Uroquinasa , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Quercetina/farmacología , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
4.
Pharm Dev Technol ; 26(6): 617-633, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33882793

RESUMEN

Despite a relatively low prevalence of primary brain tumors, they continuously attract scientific interest because of the complexity of their treatment due to their location behind the blood-brain barrier. The main challenge in treatment of brain tumors is not the efficacy of the drugs, per se, but the low efficiency of drug delivery to malignant cells. At the core of the problem is the complex structure of the blood-brain barrier. Nowadays, there is evidence supporting the claim that bile acids have the ability to cross the blood-brain barrier. That ability can be exploited by taking a part in novel drug carrier designs. Bile acids represent a drug carrier system as a part of a mixed micelle composition, bilosomes and conjugates with various drugs. This review discusses the current knowledge related to bile acid molecules as drug penetration modifying agents, with the focus on central nervous system antitumor drug delivery.


Asunto(s)
Antineoplásicos/metabolismo , Ácidos y Sales Biliares/metabolismo , Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/metabolismo , Animales , Antineoplásicos/administración & dosificación , Ácidos y Sales Biliares/administración & dosificación , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Fármacos del Sistema Nervioso Central/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Humanos , Neoplasias/tratamiento farmacológico
5.
Eur J Drug Metab Pharmacokinet ; 45(1): 1-14, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31385198

RESUMEN

The continuously increasing incidence of diabetes worldwide has attracted the attention of the scientific community and driven the development of a novel class of antidiabetic drugs that can be safely and effectively used in diabetic patients. Of particular interest in this context are complications associated with diabetes, such as renal impairment, which is the main cause of high cardiovascular morbidity and mortality in diabetic patients. Intensive control of glucose levels and other risk factors associated with diabetes and metabolic syndrome provides the foundations for both preventing and treating diabetic nephropathy. Dipeptidyl peptidase-4 (DPP-4) inhibitors represent a highly promising novel class of oral agents used in the treatment of type 2 diabetes mellitus that may be successfully combined with currently available antidiabetic therapeutics in order to achieve blood glucose goals. Beyond glycemic control, emerging evidence suggests that DPP-4 inhibitors may have desirable off-target effects, including renoprotection. All type 2 diabetes mellitus patients with impaired renal function require dose adjustment of any DPP-4 inhibitor administered except for linagliptin, for which renal excretion is a minor elimination pathway. Thus, linagliptin is the drug most frequently chosen to treat type 2 diabetes mellitus patients with renal failure.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Inhibidores de la Dipeptidil-Peptidasa IV/farmacocinética , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Hipoglucemiantes/farmacocinética , Glucemia , Complicaciones de la Diabetes , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Humanos , Incretinas/fisiología , Linagliptina/uso terapéutico , Insuficiencia Renal/etiología , Insuficiencia Renal/fisiopatología
6.
Curr Pharm Des ; 25(35): 3776-3783, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31663474

RESUMEN

BACKGROUND: Resveratrol was demonstrated to act as partial agonist of PPAR-γ receptor, which opens up the possibility for its use in the treatment of metabolic disorders. Considering the poor bioavailability of resveratrol, particularly due to its low aqueous solubility, we aimed to identify analogues of resveratrol with improved pharmacokinetic properties and higher binding affinities towards PPAR-γ. METHODS: 3D structures of resveratrol and its analogues were retrieved from ZINC database, while PPAR-γ structure was obtained from Protein Data Bank. Docking studies were performed using Molegro Virtual Docker software. Molecular descriptors relevant to pharmacokinetics were calculated from ligand structures using VolSurf+ software. RESULTS: Using structural similarity search method, 56 analogues of resveratrol were identified and subjected to docking analyses. Binding energies were ranged from -136.69 to -90.89 kcal/mol, with 16 analogues having higher affinities towards PPAR-γ in comparison to resveratrol. From the calculated values of SOLY descriptor, 23 studied compounds were shown to be more soluble in water than resveratrol. However, only two tetrahydroxy stilbene derivatives, piceatannol and oxyresveratrol, had both better solubility and affinity towards PPAR-γ. These compounds also had more favorable ADME profile, since they were shown to be more metabolically stable and wider distributed in body than resveratrol. CONCLUSION: Piceatannol and oxyresveratrol should be considered as potential lead compounds for further drug development. Although experimental validation of obtained in silico results is required, this work can be considered as a step toward the discovery of new natural and safe drugs in treatment of metabolic disorders.


Asunto(s)
Enfermedades Metabólicas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Resveratrol/análogos & derivados , Resveratrol/uso terapéutico , Simulación por Computador , Humanos , Ligandos , Programas Informáticos
7.
Front Pharmacol ; 9: 1382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559664

RESUMEN

Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.

8.
Front Pharmacol ; 9: 1283, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30467479

RESUMEN

Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.

9.
Eur J Drug Metab Pharmacokinet ; 43(3): 269-280, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29039071

RESUMEN

A major advancement in therapy of type 1 diabetes mellitus (T1DM) is the discovery of new treatment which avoids and even replaces the absolute requirement for injected insulin. The need for multiple drug therapy of comorbidities associated with T1DM increases demand for developing novel therapeutic alternatives with new mechanisms of actions. Compared to other sulphonylurea drugs used in the treatment of type 2 diabetes mellitus, gliclazide exhibits a pleiotropic action outside pancreatic ß cells, the so-called extrapancreatic effects, such as antiinflammatory and cellular protective effects, which might be beneficial in the treatment of T1DM. Results from in vivo experiments confirmed the positive effects of gliclazide in T1DM that are even more pronounced when combined with other hypoglycaemic agents such as probiotics and bile acids. Even though the exact mechanism of interaction at the molecular level is still unknown, there is a clear synergistic effect between gliclazide, bile acids and probiotics illustrated by the reduction of blood glucose levels and improvement of diabetic complications. Therefore, the manipulation of bile acid pool and intestinal microbiota composition in combination with old drug gliclazide could be a novel therapeutic approach for patients with T1DM.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Gliclazida/farmacología , Gliclazida/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Probióticos/farmacología , Animales , Humanos
10.
Eur J Drug Metab Pharmacokinet ; 42(6): 881-890, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28534261

RESUMEN

Following the drug administration, patients are exposed not only to the parent drug itself, but also to the metabolites generated by drug-metabolizing enzymes. The role of drug metabolites in cytochrome P450 (CYP) inhibition and subsequent drug-drug interactions (DDIs) have recently become a topic of considerable interest and scientific debate. The list of metabolites that were found to significantly contribute to clinically relevant DDIs is constantly being expanded and reported in the literature. New strategies have been developed for better understanding how different metabolites of a drug candidate contribute to its pharmacokinetic properties and pharmacological as well as its toxicological effects. However, the testing of the role of metabolites in CYP inhibition is still not routinely performed during the process of drug development, although the evaluation of time-dependent CYP inhibition during the clinical candidate selection process may provide information on possible effects of metabolites in CYP inhibition. Due to large number of compounds to be tested in the early stages of drug discovery, the experimental approaches for assessment of CYP-mediated metabolic profiles are particularly resource demanding. Consequently, a large number of in silico or computational tools have been developed as useful complement to experimental approaches. In summary, circulating metabolites may be recognized as significant CYP inhibitors. Current data may suggest the need for an optimized effort to characterize the inhibitory potential of parent drugs metabolites on CYP, as well as the necessity to develop the advanced in vitro models that would allow a better quantitative predictive value of in vivo studies.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inactivación Metabólica/efectos de los fármacos , Preparaciones Farmacéuticas/metabolismo , Interacciones Farmacológicas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA