Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J R Soc Interface ; 11(98): 20140589, 2014 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25008084

RESUMEN

During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3' end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called 'closed-loop' model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces a substantial increase in ribosome current. Furthermore, for sufficiently large values of the recycling rate, the lattice does not transition directly from low to high ribosome density, as seen in lattice models without recycling. Instead, a maximal current phase becomes accessible for much lower values of the initiation rate, and multiple phase transitions occur over a wide region of the phase plane. Crucially, we show that in the presence of ribosome recycling, mRNAs can exhibit a peak in protein production at low values of the initiation rate, beyond which translation rate decreases. This has important implications for translation of certain mRNAs, suggesting that there is an optimal concentration of ribosomes at which protein synthesis is maximal, and beyond which translational efficiency is impaired.


Asunto(s)
Ribosomas/fisiología , Saccharomyces cerevisiae/fisiología , Algoritmos , Simulación por Computador , Difusión , Modelos Teóricos , Mutación , Biosíntesis de Proteínas , ARN Mensajero/metabolismo
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 1): 051904, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20866258

RESUMEN

Messenger RNA translation is often studied by means of statistical-mechanical models based on the asymmetric simple exclusion process (ASEP), which considers hopping particles (the ribosomes) on a lattice (the polynucleotide chain). In this work we extend this class of models and consider the two fundamental steps of the ribosome's biochemical cycle following a coarse-grained perspective. In order to achieve a better understanding of the underlying biological processes and compare the theoretical predictions with experimental results, we provide a description lying between the minimal ASEP-like models and the more detailed models, which are analytically hard to treat. We use a mean-field approach to study the dynamics of particles associated with an internal stepping cycle. In this framework it is possible to characterize analytically different phases of the system (high density, low density or maximal current phase). Crucially, we show that the transitions between these different phases occur at different parameter values than the equivalent transitions in a standard ASEP, indicating the importance of including the two fundamental steps of the ribosome's biochemical cycle into the model.


Asunto(s)
Biofisica/métodos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Algoritmos , Codón , Simulación por Computador , Genoma Fúngico , Modelos Genéticos , Modelos Estadísticos , Modelos Teóricos , Método de Montecarlo , Estrés Mecánico
3.
Nucleic Acids Res ; 32(22): 6605-16, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15602002

RESUMEN

In-frame stop codons normally signal termination during mRNA translation, but they can be read as 'sense' (readthrough) depending on their context, comprising the 6 nt preceding and following the stop codon. To identify novel contexts directing readthrough, under-represented 5' and 3' stop codon contexts from Saccharomyces cerevisiae were identified by genome-wide survey in silico. In contrast with the nucleotide bias 3' of the stop codon, codon bias in the two codon positions 5' of the termination codon showed no correlation with known effects on stop codon readthrough. However, individually, poor 5' and 3' context elements were equally as effective in promoting stop codon readthrough in vivo, readthrough which in both cases responded identically to changes in release factor concentration. A novel method analysing specific nucleotide combinations in the 3' context region revealed positions +1,2,3,5 and +1,2,3,6 after the stop codon were most predictive of termination efficiency. Downstream of yeast open reading frames (ORFs), further in-frame stop codons were significantly over-represented at the +1, +2 and +3 codon positions after the ORF, acting to limit readthrough. Thus selection against stop codon readthrough is a dominant force acting on 3', but not on 5', nucleotides, with detectable selection on nucleotides as far downstream as +6 nucleotides. The approaches described can be employed to define potential readthrough contexts for any genome.


Asunto(s)
Codón de Terminación , Biología Computacional/métodos , Genómica/métodos , Terminación de la Cadena Péptídica Traduccional , Saccharomyces cerevisiae/genética , Codón de Terminación/química , Genoma Fúngico , Nucleótidos/química , Sistemas de Lectura Abierta , Biosíntesis de Proteínas
4.
Bioorg Med Chem Lett ; 11(14): 1925-9, 2001 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-11459662

RESUMEN

The lipophilic 1-substituent in a series of 1-((amidolinked)-alkyl)-pyrimidones, inhibitors of recombinant lipoprotein-associated phospholipase A(2), has been modified to give inhibitors of high potency in human plasma and enhanced physicochemical properties. Phenylpiperazineacetamide derivative 23 shows very promising oral activity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfolipasas A/antagonistas & inhibidores , Fosfolipasas A/sangre , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Administración Oral , Animales , Inhibidores Enzimáticos/síntesis química , Humanos , Concentración 50 Inhibidora , Tasa de Depuración Metabólica/fisiología , Microsomas Hepáticos/metabolismo , Piperazinas/síntesis química , Piperazinas/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/farmacología , Conejos , Ratas
5.
Bioorg Med Chem Lett ; 11(5): 701-4, 2001 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-11266173

RESUMEN

Modification of the pyrimidone 5-substituent in a series of 1-((amidolinked)-alkyl)-pyrimidones, lipophilic inhibitors of lipoprotein-associated phospholipase A2, has given inhibitors of nanomolar potency and improved physicochemical properties. Compound 23 was identified as a potent, highly water soluble. CNS penetrant inhibitor suitable for intravenous administration.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fosfolipasas A/antagonistas & inhibidores , Pirimidinonas/química , Pirimidinonas/farmacología , Animales , Arteriosclerosis/tratamiento farmacológico , Vías de Administración de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Humanos , Masculino , Estructura Molecular , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Pirimidinonas/síntesis química , Conejos , Ratas , Solubilidad , Agua/química
6.
Bioorg Med Chem Lett ; 10(22): 2557-61, 2000 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11086729

RESUMEN

From two related series of 2-(alkylthio)-pyrimidones, a novel series of 1-((amidolinked)-alkyl)-pyrimidones has been designed as nanomolar inhibitors of human lipoprotein-associated phospholipase A2. These compounds show greatly enhanced activity in isolated plasma. Selected derivatives such as compounds 51 and 52 are orally active with a good duration of action.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lipoproteínas/metabolismo , Fosfolipasas A/antagonistas & inhibidores , Pirimidinonas/farmacología , Administración Oral , Animales , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Estructura Molecular , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Pirimidinonas/administración & dosificación , Pirimidinonas/química , Conejos
7.
RNA ; 6(9): 1236-47, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10999601

RESUMEN

Eukaryote ribosomal translation is terminated when release factor eRF1, in a complex with eRF3, binds to one of the three stop codons. The tertiary structure and dimensions of eRF1 are similar to that of a tRNA, supporting the hypothesis that release factors may act as molecular mimics of tRNAs. To identify the yeast eRF1 stop codon recognition domain (analogous to a tRNA anticodon), a genetic screen was performed to select for mutants with disabled recognition of only one of the three stop codons. Nine out of ten mutations isolated map to conserved residues within the eRF1 N-terminal domain 1. A subset of these mutants, although wild-type for ribosome and eRF3 interaction, differ in their respective abilities to recognize each of the three stop codons, indicating codon-specific discrimination defects. Five of six of these stop codon-specific mutants define yeast domain 1 residues (I32, M48, V68, L123, and H129) that locate at three pockets on the eRF1 domain 1 molecular surface into which a stop codon can be modeled. The genetic screen results and the mutant phenotypes are therefore consistent with a role for domain 1 in stop codon recognition; the topology of this eRF1 domain, together with eRF1-stop codon complex modeling further supports the proposal that this domain may represent the site of stop codon binding itself.


Asunto(s)
Codón de Terminación/fisiología , Factores de Terminación de Péptidos/fisiología , Biosíntesis de Proteínas/fisiología , Alelos , Secuencia de Aminoácidos , Western Blotting , Secuencia Conservada/fisiología , Escherichia coli/fisiología , Células Eucariotas/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Células Procariotas/fisiología , Conformación Proteica , Ribosomas/metabolismo , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido
8.
Bioorg Med Chem Lett ; 10(4): 395-8, 2000 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-10714508

RESUMEN

Starting from two weakly active hits from high throughput screening, a novel series of 2-(alkylthio)-pyrimidin-4-ones with high potency and selectivity for lipoprotein-associated phospholipase A2 has been designed. In contrast to previously known inhibitors, these have been shown to act by a non-covalent and substrate competitive mechanism.


Asunto(s)
Fosfolipasas A/antagonistas & inhibidores , Pirimidinonas/química , Pirimidinonas/farmacología , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Fosfolipasas A2 , Pirimidinonas/síntesis química , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Mol Microbiol ; 32(3): 485-96, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10320572

RESUMEN

Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3, which interact to form a heterodimer that mediates termination at all three stop codons. By C-terminal deletion analysis of eRF1 from the yeast Saccharomyces cerevisiae, we show that the extreme C-terminus of this 437-amino-acid protein defines a functionally important domain for translation termination. A strain encoding eRF1 lacking the C-terminal 32 amino acids is not viable, whereas deletion of the C-terminal 19 amino acids is viable but shows a termination defect in vivo causing an enhancement of nonsense suppression. Using a combination of two-hybrid analysis and in vitro binding studies, we demonstrate that deletions encompassing the C-terminus of eRF1 cause a significant reduction in eRF3 binding to eRF1. All of the C-terminally truncated eRF1 still bind the ribosome, suggesting that the C-terminus does not constitute a ribosome-binding domain and eRF1 does not need to form a stable complex with eRF3 in order to bind the ribosome. These data, together with previously published data, suggest that the region between amino acids 411 and 418 of yeast eRF1 defines an essential functional domain that is part of the major site of interaction with eRF3. However, a stable eRF1:eRF3 complex does not have to be formed to maintain viability or efficient translation termination. Alignment of the seven known eukaryotic eRF1 sequences indicates that a highly conserved motif, GFGGIGG/A is present within the region of the C-terminus, although our deletion studies suggest that it is sequences C-terminal to this region that are functionally important.


Asunto(s)
Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Xenopus , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Genes Supresores , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Xenopus laevis
10.
J Mol Biol ; 282(1): 13-24, 1998 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-9733638

RESUMEN

We describe the development of a novel plasmid-based assay for measuring the in vivo frequency of misincorporation of amino acids into polypeptide chains in the yeast Saccharomyces cerevisiae. The assay is based upon the measurement of the catalytic activity of an active site mutant of type III chloramphenicol acetyl transferase (CATIII) expressed in S. cerevisiae. A His195(CAC)-->Tyr195(UAC) mutant of CATIII is completely inactive, but catalytic activity can be restored by misincorporation of histidine at the mutant UAC codon. The average error frequency of misincorporation of histidine at this tyrosine UAC codon in wild-type yeast strains was measured as 0. 5x10(-5) and this frequency was increased some 50-fold by growth in the presence of paromomycin, a known translational-error-inducing antibiotic. A detectable frequency of misincorporation of histidine at a mutant Ala195 GCU codon was also measured as 2x10(-5), but in contrast to the Tyr195-->His195 misincorporation event, the frequency of histidine misincorporation at Ala195 GCU was not increased by paromomycin, inferring that this error did not result from miscognate codon-anticodon interaction. The His195 to Tyr195 missense error assay was used to demonstrate increased frequencies of missense error at codon 195 in SUP44 and SUP46 mutants. These two mutants have previously been shown to exhibit a translation termination error phenotype and the sup44+ and sup46+ genes encode the yeast ribosomal proteins S4 and S9, respectively. These data represent the first accurate in vivo measurement of a specific mistranslation event in a eukaryotic cell and directly confirm that the eukaryotic ribosome plays an important role in controlling missense errors arising from non-cognate codon-anticodon interactions.


Asunto(s)
Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Alanina/genética , Sitios de Unión/genética , Cloranfenicol O-Acetiltransferasa/genética , Codón , Cicloheximida/farmacología , Técnicas Genéticas , Histidina/genética , Mutación , Paromomicina/farmacología , Proteína Ribosómica S9 , Proteínas Ribosómicas/genética , Tirosina/genética
11.
Eur J Biochem ; 245(3): 557-63, 1997 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9182990

RESUMEN

Genetic studies have indicated that the product of the yeast SUP45 gene encodes a component of the translational-termination machinery. In higher eukaryotes, genes similar to SUP45 encode eukaryote release factor 1 (eRF1), which has a stop-codon-dependent peptidyl-release activity. Using a conditional-lethal mutant allele of SUP45 (sup45-2) and a combination of in vivo and in vitro approaches, we demonstrate that the product of the SUP45 gene (Sup45p or eRF1) is a factor required for translation termination in yeast. A homologous in vitro assay based on suppressor-tRNA-mediated readthrough of stop codons is used to show that a translating lysate from a sup45-2 mutant strain exhibits a termination defect when heated for short periods to greater than the non-permissive temperature (37 degrees C). This defect can be complemented with a purified preparation of Sup45p (eRF1) expressed in Eschericha coli. The termination defect in this strain appears to be due to an inability of the Sup45p protein to bind the ribosome, resulting in vivo in a reduced ability of Sup45p to release nascent polypeptides from the ribosome at the non-permissive temperature. Cell-free translation lysates from the sup45-2 strain do not show a defect in sense-codon translation at the non-permissive temperature. These data demonstrate that yeast eRF1 plays a role in translation termination and is functionally equivalent to its higher eukaryotic homologues.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Factores de Terminación de Péptidos , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Mutación
12.
Biochimie ; 79(1): 27-36, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9195043

RESUMEN

Polypeptide chain termination in eukaryotic cells is mediated in part by the release factor eRF1 (Sup45p). We have isolated and characterised cDNAs encoding this translation factor from Syrian hamster (Mesocricetus auratus) and human (Homo sapiens) Daudi cells. Comparison of the deduced amino acid sequence of these new eRF1 (Sup45p) sequences with those published for Saccharomyces cerevisiae, Arabidopsis thaliana, Xenopus laevis and human indicates a high degree of amino acid identity across a broad evolutionary range of species. Both the 5' and 3' UTRs of the mammalian eRF1 (Sup45p)-encoding cDNAs show an unusually high degree of conservation for non-coding regions. In addition, the presence of two different lengths of 3' UTR sequences in the mammalian eRF1 (Sup45p) cDNAs indicated that alternative polyadenylation sites might be used in vivo. Northern blot analysis demonstrated that eRF1 (Sup45p) transcripts of differing length, consistent with the use of alternative polyadenylation sites, were detectable in a wide range of mammalian tissues. The Xenopus, human and Syrian hamster eRF1 (Sup45p) cDNAs were shown to support the viability of a strain of S cerevisiae carrying an otherwise lethal sup45::HIS3 gene disruption indicating evolutionary conservation of function. However, the yeast strains expressing the heterogenous eRF1 (Sup45p) showed a defect in translation termination as defined by an enhancement of nonsense suppressor tRNA activity in vivo. Western blot analysis confirmed that Xenopus eRF1 (Sup45p) was primarily ribosome-associated when expressed in yeast indicating that the ribosome-binding domain of eRF1 (Sup45p) is also conserved.


Asunto(s)
ADN Complementario/genética , Factores de Terminación de Péptidos/genética , Proteínas de Xenopus , Animales , Arabidopsis , Línea Celular , Clonación Molecular , Cricetinae , Expresión Génica , Código Genético , Humanos , Mesocricetus , Datos de Secuencia Molecular , Especificidad de Órganos , Factores de Terminación de Péptidos/biosíntesis , Procesamiento Postranscripcional del ARN , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae , Homología de Secuencia de Ácido Nucleico , Xenopus
13.
Mol Microbiol ; 20(6): 1135-43, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8809766

RESUMEN

In Saccharomyces cerevisiae, translation termination is mediated by a complex of two proteins, eRF1 and eRF3, encoded by the SUP45 and SUP35 genes, respectively. Mutations in the SUP45 gene were selected which enhanced suppression by the weak ochre (UAA) suppressor tRNA(Ser) SUQ5. In each of four such allosuppressor alleles examined, an in-frame ochre (TAA) mutation was present in the SUP45 coding region; therefore each allele encoded both a truncated eRF1 protein and a full-length eRF1 polypeptide containing a serine missense substitution at the premature UAA codon. The full-length eRF1 generated by UAA read-through was present at sub-wild-type levels. In an suq5+ (i.e. non-suppressor) background none of the truncated eRF1 polypeptides were able to support cell viability, with the loss of only 27 amino acids from the C-terminus being lethal. The reduced eRF1 levels in these sup45 mutants did not lead to a proportional reduction in the levels of ribosome-bound eRF3, indicating that eRF3 can bind the ribosome independently of eRF1. A serine codon inserted in place of the premature stop codon at codon 46 in the sup45-22 allele did not generate an allosuppressor phenotype, thereby ruling out this "missense' mutation as the cause of the allosuppressor phenotype. These data indicate that the cellular levels of eRF1 are important for ensuring efficient translation termination in yeast.


Asunto(s)
Proteínas Fúngicas/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alelos , Clonación Molecular , ADN de Hongos , Proteínas Fúngicas/genética , Factores de Terminación de Péptidos/genética , Fenotipo , ARN de Hongos , ARN de Transferencia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de Secuencia de ADN , Supresión Genética
15.
Mol Biol Cell ; 7(1): 25-42, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8741837

RESUMEN

Saccharomyces cerevisiae cells treated with the immunosuppressant rapamycin or depleted for the targets of rapamycin TOR1 and TOR2 arrest growth in the early G1 phase of the cell cycle. Loss of TOR function also causes an early inhibition of translation initiation and induces several other physiological changes characteristic of starved cells entering stationary phase (G0). A G1 cyclin mRNA whose translational control is altered by substitution of the UBI4 5' leader region (UBI4 is normally translated under starvation conditions) suppresses the rapamycin-induced G1 arrest and confers starvation sensitivity. These results suggest that the block in translation initiation is a direct consequence of loss of TOR function and the cause of the G1 arrest. We propose that the TORs, two related phosphatidylinositol kinase homologues, are part of a novel signaling pathway that activates eIF-4E-dependent protein synthesis and, thereby, G1 progression in response to nutrient availability. Such a pathway may constitute a checkpoint that prevents early G1 progression and growth in the absence of nutrients.


Asunto(s)
Proteínas Fúngicas/fisiología , Fase G1 , Regulación Fúngica de la Expresión Génica , Fosfatidilinositol 3-Quinasas , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crecimiento & desarrollo , Antifúngicos/farmacología , Secuencia de Bases , Northern Blotting , Proteínas de Ciclo Celular , Ciclinas/genética , Ciclinas/metabolismo , Citometría de Flujo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plásmidos , Polienos/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Sirolimus
17.
EMBO J ; 14(17): 4365-73, 1995 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-7556078

RESUMEN

The product of the yeast SUP45 gene (Sup45p) is highly homologous to the Xenopus eukaryote release factor 1 (eRF1), which has release factor activity in vitro. We show, using the two-hybrid system, that in Saccharomyces cerevisiae Sup45p and the product of the SUP35 gene (Sup35p) interact in vivo. The ability of Sup45p C-terminally tagged with (His)6 to specifically precipitate Sup35p from a cell lysate was used to confirm this interaction in vitro. Although overexpression of either the SUP45 or SUP35 genes alone did not reduce the efficiency of codon-specific tRNA nonsense suppression, the simultaneous overexpression of both the SUP35 and SUP45 genes in nonsense suppressor tRNA-containing strains produced an antisuppressor phenotype. These data are consistent with Sup35p and Sup45p forming a complex with release factor properties. Furthermore, overexpression of either Xenopus or human eRF1 (SUP45) genes also resulted in anti-suppression only if that strain was also overexpressing the yeast SUP35 gene. Antisuppression is a characteristic phenotype associated with overexpression of both prokaryote and mitochondrial release factors. We propose that Sup45p and Sup35p interact to form a release factor complex in yeast and that Sup35p, which has GTP binding sequence motifs in its C-terminal domain, provides the GTP hydrolytic activity which is a demonstrated requirement of the eukaryote translation termination reaction.


Asunto(s)
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Familia de Multigenes , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos , Priones , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Histidina , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Plásmidos , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Supresión Genética
18.
Curr Genet ; 27(5): 417-26, 1995 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7586027

RESUMEN

Using a plasmid-based termination-read-through assay, the sal4-2 conditional-lethal (temperature-sensitive) allele of the SUP45 (SAL4) gene was shown to enhance the efficiency of the weak ochre suppressor tRNA SUQ5 some 10-fold at 30 degrees C. Additionally, this allele increased the suppressor efficiency of SRM2-2, a weak tRNA(Gln) ochre suppressor, indicating that the allosuppressor phenotype is not SUQ5-specific. A sup+ sal4-2 strain also showed a temperature-dependent omnipotent suppressor phenotype, enhancing readthrough of all three termination codons. Combining the sal4-2 allele with an efficient tRNA nonsense suppressor (SUP4) increased the temperature-sensitivity of that strain, indicating that enhanced nonsense suppressor levels contribute to the conditional-lethality conferred by the sal4-2 allele. However, UGA suppression levels in a sup+ sal4-2 strain following a shift to the non-permissive temperature reached a maximum significantly below that exhibited by a non-temperature sensitive SUP4 suppressor strain. Enhanced nonsense suppression may not therefore be the primary cause of the conditional-lethality of this allele. These data indicate a role for Sup45p in translation termination, and possibly in an additional, as yet unidentified, cellular process.


Asunto(s)
Genes Fúngicos , Genes Letales , Mutación , Saccharomyces cerevisiae/genética , Alelos , Secuencia de Bases , Clonación Molecular , Genes Supresores , Datos de Secuencia Molecular , Fenotipo , ARN de Transferencia de Serina , Análisis de Secuencia de ADN , Supresión Genética , Temperatura
20.
Curr Genet ; 25(5): 385-95, 1994 May.
Artículo en Inglés | MEDLINE | ID: mdl-8082183

RESUMEN

The study of translational termination in yeast has been approached largely through the identification of a range of mutations which either increase or decrease the efficiency of stop-codon recognition. Subsequent cloning of the genes encoding these factors has identified a number of proteins important for maintaining the fidelity of termination, including at least three ribosomal proteins (S5, S13, S28). Other non-ribosomal proteins have been identified by mutations which produce gross termination-accuracy defects, namely the SUP35 and SUP45 gene products which have closely-related higher eukaryote homologues (GST1-h and SUP45-h respectively) and which can complement the corresponding defective yeast proteins, implying that the yeast ribosome may be a good model for the termination apparatus existing in higher translation systems. While the yeast mitochondrial release factor has been cloned (Pel et al. 1992), the corresponding cytosolic RF has not yet been identified. It seems likely, however, that the identification of the gene encoding eRF could be achieved using a multicopy antisuppressor screen such as that employed to clone the E. coli prfA gene (Weiss et al. 1984). Identification of the yeast eRF and an investigation of its interaction with other components of the yeast translational machinery will no doubt further the definition of the translational termination process. While a large number of mutations have been isolated in which the efficiency of termination-codon recognition is impaired, it seems probable that a proportion of mutations within this class will comprise those where the accuracy of 'A' site codon-anticodon interaction is compromised: such defects would also have an effect on termination-codon suppression, allowing mis- or non-cognate tRNAs to bind stop-codons, causing nonsense suppression. The remainder of mutations affecting termination fidelity should represent mutations in genes coding for components of the termination apparatus, including the eRF: these mutations reduce the efficiency of termination, allowing nonsense suppression by low-efficiency natural suppressor tRNAs. Elucidation of the mechanism of termination in yeast will require discrimination between these two classes of mutations, thus allowing definition of termination-specific gene products.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Codón/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación , Biosíntesis de Proteínas , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...