Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(14): 145101, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061468

RESUMEN

Carbohydrates constitute one of the four key classes of biomacromolecules but have not been studied by 2D-IR spectroscopy so far. Similarly as for proteins, a lack of native vibrational reporter groups, combined with their huge structural diversity, leads to spectrally congested infrared spectra already for single carbohydrates. Biophysical studies are further impeded by the strong overlap between water modes and carbohydrate modes. Here, we demonstrate the application of the known vibrational reporter group thiocyanate (SCN) as a label in glucose. In this first study, we are able to perform IR and 2D-IR spectroscopy of ß-glucose with SCN at the C2 position in chloroform. Upon improved synthesis and the removal of all protecting groups, we successfully performed 2D-IR spectroscopy of ß-glucose in H2O. All experimental results are compared to those of methyl-thiocyanate as a reference sample. Overall, we show that the concept of using site-specific vibrational reporter groups can be transferred to carbohydrates. Thus, biophysical studies with 2D-IR spectroscopy can now expand to glycoscience.


Asunto(s)
Glucosa , Tiocianatos , Espectrofotometría Infrarroja/métodos , Tiocianatos/química , Espectroscopía Infrarroja por Transformada de Fourier , Hexosas
2.
Struct Dyn ; 3(4): 043208, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27191011

RESUMEN

Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm(-1) was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal.

3.
Struct Dyn ; 3(4): 043210, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27226980

RESUMEN

We combined femtosecond (fs) VIS pump-IR probe spectroscopy with fs VIS pump-supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm(-1) is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm(-1) and at 1508 cm(-1). These marker bands allow a precise identification of triplet dynamics in corrole systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...