Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(10): e112053, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762703

RESUMEN

UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.


Asunto(s)
Péptidos , Proteínas , Proteínas/metabolismo , Ribosomas/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo
2.
Autophagy ; 17(2): 586-587, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33164651

RESUMEN

Reticulophagy, the autophagic degradation of the endoplasmic reticulum, is crucial to maintain ER homeostasis during stress. Although several reticulophagy receptors have been discovered recently, most of them have been studied using nutrient starvation. How macroautophagy/autophagy cross-talks with other ER-quality control mechanisms is largely unknown. Using ATG8-based affinity proteomics in the model plant Arabidopsis thaliana, we identified AT5G06830/C53, a soluble protein that directly interacts with ATG8. Biochemical and biophysical characterization of C53-ATG8 interaction using both human (CDK5RAP3) and Arabidopsis proteins revealed that C53 binds ATG8 via shuffled Atg8-family interacting motifs (sAIMs) located at its intrinsically disordered region (IDR). C53 is recruited to phagophores, precursors to autophagosomes, during ER stress in an autophagy-dependent manner. Consistently, c53 mutants are highly sensitive to ER stress treatments. C53 senses ER stress by forming a tripartite receptor complex that involves UFL1, the E3 ligase that mediates ufmylation, and its ER-resident adaptor protein DDRGK1. C53 activity is regulated by another ubiquitin-like protein, UFM1, which is transferred from C53 to the ribosomes upon ribosome collision/stalling at the ER, thereby activating the C53 pathway to recycle stalled nascent chains. Altogether our findings suggest C53 forms an ancient quality control pathway that links ribosome-associated quality control with selective autophagy at the ER.


Asunto(s)
Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Ribosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arabidopsis/metabolismo , Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Homeostasis/fisiología , Humanos
3.
Elife ; 92020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32851973

RESUMEN

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


For cells to survive they need to be able to remove faulty or damaged components. The ability to recycle faulty parts is so crucial that some of the molecular machinery responsible is the same across the plant and animal kingdoms. One of the major recycling pathways cells use is autophagy, which labels damaged proteins with molecular tags that say 'eat-me'. Proteins called receptors then recognize these tags and move the faulty component into vesicles that transport the cargo to a specialized compartment that recycles broken parts. Cells make and fold around 40% of their proteins at a site called the endoplasmic reticulum, or ER for short. However, the process of folding and synthesizing proteins is prone to errors. For example, when a cell is under stress this can cause a 'stall' in production, creating a build-up of faulty, partially constructed proteins that are toxic to the cell. There are several quality control systems which help recognize and correct these errors in production. Yet, it remained unclear how autophagy and these quality control mechanisms are linked together. Here, Stephani, Picchianti et al. screened for receptors that regulate the recycling of faulty proteins by binding to the 'eat-me' tags. This led to the identification of a protein called C53, which is found in both plant and animal cells. Microscopy and protein-protein interaction tests showed that C53 moves into transport vesicles when the ER is under stress and faulty proteins start to build-up. Once there, C53 interacts with two proteins embedded in the wall of the endoplasmic reticulum. These proteins form part of the quality control system that senses stalled protein production, labelling the stuck proteins with 'eat-me' tags. Together with C53, they identify and remove half-finished proteins before they can harm the cell. The fact that C53 works in the same way in both plant and human cells suggests that many species might use this receptor to recycle stalled proteins. This has implications for a wide range of research areas, from agriculture to human health. A better understanding of C53 could be beneficial for developing stress-resilient crops. It could also aid research into human diseases, such as cancer and viral infections, that have been linked to C53 and its associated proteins.


Asunto(s)
Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostasis , Humanos , Proteostasis/fisiología , Proteínas Supresoras de Tumor/metabolismo
4.
J Mol Biol ; 432(1): 63-79, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31260688

RESUMEN

Selective autophagy has emerged as a major quality control pathway that surgically removes damaged or unwanted macromolecules to maintain cellular health. Defects in selective autophagy have been linked with several neurodegenerative and metabolic diseases, and aging in animal models. Similarly, genetic studies have shown that autophagy is involved in a wide range of stress responses in plants. Over the last decade, as discussed in other review articles in this special issue, ground-breaking studies in yeast and mammalian models uncovered molecular details of selective cargo recognition and autophagosome biogenesis. However, despite the growing interest in "green autophagy," we still have large gaps in our understanding of selective autophagy processes in plants. In this opinion article, we will highlight some of these unknowns that motivate us and discuss how we are trying to address them. Furthermore, we will propose a three-layered approach, already feasible in Arabidopsis root, that envisions to bridge mechanistic studies with cell type and stimulus-specific autophagy dynamics that could reveal the extent to which selective autophagy contributes to organismal fitness. Altogether, we hope it will provide a framework for future studies that move beyond genetic analysis and aim to mechanistically unravel how selective autophagy contributes to plant survival.


Asunto(s)
Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Regulación de la Expresión Génica de las Plantas , Macroautofagia , Modelos Moleculares , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas/genética
5.
PLoS Biol ; 17(7): e3000373, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31329577

RESUMEN

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Conformación Proteica en Lámina beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
6.
Chemphyschem ; 20(2): 236-240, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30221816

RESUMEN

Covalent conjugates between a synthetic polymer and a peptide hormone were used to probe the molecular extension of these macromolecules and how the polymer modifies the fibril formation of the hormone. NMR spectroscopy of 15 N labeled parathyroid hormone (PTH) was employed to visualize the conformation of the conjugated synthetic polymer, triggered by small temperature changes via its lower critical solution temperature. A shroud-like polymer conformation dominated the molecular architecture of the conjugated chimeras. PTH readily forms amyloid fibrils, which is probably the physiological storage form of the hormone. The polyacrylate based polymers stimulated the nucleation processes of the peptide.


Asunto(s)
Amiloide/química , Hormona Paratiroidea/química , Polímeros/química , Amiloide/metabolismo , Cinética , Microscopía Electrónica , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Hormona Paratiroidea/metabolismo , Conformación Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA