Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(45)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39111341

RESUMEN

The chromium crystal doped with119Sn isotope was studied using the nuclear resonance inelastic x-ray scattering and first principles calculations. The Sn partial phonon density of states (PDOS) was obtained for three temperatures that correspond to different magnetic states of Cr. At all temperatures, the energy spectrum consists of a broad band around 18 meV and a narrow peak at 43 meV. The additional peak around 39 meV is observed only in the magnetically ordered phases, indicating the influence of magnetic order in chromium on lattice dynamics. The partial PDOS calculated with the antiferromagnetic order on Cr atoms show a very good agreement with the experimental data. It is revealed that the high-energy peak is lying above the phonon spectra of the pure bcc-Cr crystal. These are the local modes with the increased energies due to a strongly reduced distance between Sn and the nearest-neighbor Cr atoms.

2.
Beilstein J Nanotechnol ; 14: 1093-1105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025198

RESUMEN

In recent years, nanostructures with hexagonal polytypes of gold have been synthesised, opening new possibilities in nanoscience and nanotechnology. As bulk gold crystallizes in the fcc phase, surface effects can play an important role in stabilizing hexagonal gold nanostructures. Here, we investigate several heterostructures with Ge substrates, including the fcc and hcp phases of gold that have been observed experimentally. We determine and discuss their interfacial energies and optimized atomic arrangements, comparing the theory results with available experimental data. Our DFT calculations for the Au-fcc(011)/Ge(001) junction show how the presence of defects in the interface layer can help to stabilize the atomic pattern, consistent with microscopic images. Although the Au-hcp/Ge interface is characterized by a similar interface energy, it reveals large atomic displacements due to significant mismatch. Finally, analyzing the electronic properties, we demonstrate that Au/Ge systems have metallic character, but covalent-like bonding states between interfacial Ge and Au atoms are also present.

3.
Inorg Chem ; 60(13): 9571-9579, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34143607

RESUMEN

Using the density functional theory, we study the structural and lattice dynamical properties of europium sesquioxide (Eu2O3) in the cubic, trigonal, and monoclinic phases. The obtained lattice parameters and energies of the Raman modes show a good agreement with the available experimental data. The Eu-partial phonon density of states calculated for the cubic structure is compared with the nuclear inelastic scattering data obtained from a 20 nm thick Eu2O3 film deposited on a YSZ substrate. A small shift of the experimental spectrum to higher energies results from a compressive strain induced by the substrate. On the basis of lattice and phonon properties, we analyze the mechanisms of structural transitions between different phases of Eu2O3.

4.
Nanoscale Adv ; 4(1): 19-25, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36132967

RESUMEN

The spatial confinement of atoms at surfaces and interfaces significantly alters the lattice dynamics of thin films, heterostructures and multilayers. Ultrathin films with high dielectric constants (high-k) are of paramount interest for applications as gate layers in current and future integrated circuits. Here we report a lattice dynamics study of high-k Eu2O3 films with thicknesses of 21.3, 2.2, 1.3, and 0.8 nm deposited on YSZ(001). The Eu-partial phonon density of states (PDOS), obtained from nuclear inelastic scattering, exhibits broadening of the phonon peaks accompanied by up to a four-fold enhancement of the number of low-energy states compared to the ab initio calculated PDOS of a perfect Eu2O3 crystal. Our analysis demonstrates that while the former effect reflects the reduced phonon lifetimes observed in thin films due to scattering from lattice defects, the latter phenomenon arises from an ultrathin EuO layer formed between the thin Eu2O3 film and the YSZ(001) substrate. Thus, our work uncovers another potential source of vibrational anomalies in thin films and multilayers, which has to be cautiously considered.

5.
Phys Chem Chem Phys ; 20(11): 7754-7763, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29503994

RESUMEN

Dynamical properties of the two-dimensional Ti2C and Ti2N MXenes were investigated using density functional theory and discussed in connection with their structures and electronic properties. To elucidate the influence of magnetic interactions on the fundamental properties of these systems, the nonmagnetic, ferromagnetic and three distinct antiferromagnetic spin arrangements on titanium sublattice were considered. Each magnetic configuration was also studied at two directions of the spin magnetic moment with respect to the MXene layer. The zero-point energy motion, following from the phonon calculations, was taken into account while analyzing the energetic stability of the magnetic phases against the nonmagnetic solution. This contribution was found not to change a sequence of the energetic stability of the considered magnetic structures of Ti2X (X = C, N) MXenes. Both Ti2X (X = C, N) systems are shown to prefer antiferromagnetic arrangement of spins between Ti layers and the ferromagnetic order within each layer. This energetically privileged phase is semiconducting for Ti2C and metallic for Ti2N. The type of magnetic order as well as the in-plane or out-of-plane spin polarizations have a relatively small impact on the structural parameters, Ti-X bonding length, force constants and phonon spectra of both Ti2X systems, leading to observable differences only between the nonmagnetic and any other magnetic configurations. Nonetheless, a noticeable effect of the spin orientation on degeneracy of the Ti-3d orbitals is encountered. The magnetic interactions affect to a great extent the positions and intensities of the Raman-active modes, and hence one could exploit this effect for experimental verification of the theoretically predicted magnetic state of Ti2X monolayers. Theoretical phonon spectra of Ti2X (X = C, N) MXenes exhibit a linear dependence on energy in the long-wavelength limit, which is typical for a 2D system.

6.
Phys Chem Chem Phys ; 17(42): 28096-102, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25757479

RESUMEN

The structure, dynamics and stability of Fe-Pt nanoparticles have been investigated using DFT-based techniques: total energy calculations and molecular dynamics. The investigated systems included multi-shell and disordered nanoparticles of iron and platinum. The study concerns icosahedral particles with the magic number of atoms (55): iron-terminated Fe43Pt12, platinum-terminated Fe12Pt43, and disordered Fe27Pt28. Additionally, the Fe6Pt7 cluster has been investigated to probe the behaviour of extremely small Fe-Pt particles. Molecular dynamics simulations have been performed for a few temperatures between T = 150-1000 K. The calculations revealed high structural instability of the Fe-terminated nanoparticles and a strong stabilising effect of the Pt-termination in the shell-type icosahedral particles. The platinum termination prevented disordering of the particle even at T = 1000 K indicating very high melting temperatures of these Fe-Pt icosahedral structures. The analysis of evolution of the radial distribution function has shown a significant tendency of Pt atoms to move to the outside layer of the particles - even in the platinum deficient cases.

7.
J Phys Condens Matter ; 23(10): 105401, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21339581

RESUMEN

Lattice dynamics and thermodynamic properties of antiferromagnetic Fe(2)SiO(4)-spinel have been studied using density functional theory. Phonon dispersions are obtained for several hydrostatic pressures up to 20 GPa. They are used to calculate thermodynamic properties within the quasiharmonic approximation. Comparison with ab initio results obtained for Mg(2)SiO(4)-spinel is made in order to study the effect of the cation exchange on the dynamic and thermodynamic properties of (Mg, Fe)(2)SiO(4)-spinel. The obtained results have been compared with the available experimental data.


Asunto(s)
Compuestos Ferrosos/química , Simulación de Dinámica Molecular , Silicatos/química , Compuestos de Silicona/química , Termodinámica , Cristalización/métodos , Microscopía de Fuerza Atómica/métodos , Presión , Vibración
8.
J Phys Condens Matter ; 22(44): 445403, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21403347

RESUMEN

The structure, lattice dynamics and mechanical properties of magnesium hydroxide have been investigated by static density functional theory calculations as well as ab initio molecular dynamics. The hypothesis of a superstructure existing in the lattice formed by the hydrogen atoms has been tested. The elastic constants of the material have been calculated with a static deformations approach and are in fair agreement with the experimental data. The hydrogen subsystem structure exhibits signs of disordered behaviour while maintaining correlations between the angular positions of neighbouring atoms. We establish that the essential angular correlations between hydrogen positions are maintained to a temperature of at least 150 K and that they are well described by a physically motivated probabilistic model. The rotational degree of freedom appears to be decoupled from the lattice directions above 30 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA