Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39337507

RESUMEN

Phenylketonuria (PKU) is the most common inherited disorder of amino acid metabolism, characterized by high levels of phenylalanine (Phe) in the blood and brain, leading to cognitive impairment without treatment. Nevertheless, Phe-mediated brain dysfunction is not fully understood. The objective of this study was to address gene expression alterations due to excessive Phe exposure in the human neuronal model and provide molecular advances in PKU pathophysiology. Hence, we performed NT2/D1 differentiation in culture, and, for the first time, we used Phe-treated NT2-derived neurons (NT2/N) as a novel model for Phe-mediated neuronal impairment. NT2/N were treated with 1.25 mM, 2.5 mM, 5 mM, 10 mM, and 30 mM Phe and subjected to whole-mRNA short-read sequencing. Differentially expressed genes (DEGs) were analyzed and enrichment analysis was performed. Under three different Phe concentrations (2.5 mM, 5 mM, and 10 mM), DEGs pointed to the PREX1, LRP4, CDC42BPG, GPR50, PRMT8, RASGRF2, and CDH6 genes, placing them in the context of PKU for the first time. Enriched processes included dendrite and axon impairment, synaptic transmission, and membrane assembly. In contrast to these groups, the 30 mM Phe treatment group clearly represented the neurotoxicity of Phe, exhibiting enrichment in apoptotic pathways. In conclusion, we established NT2/N as a novel model for Phe-mediated neuronal dysfunction and outlined the Phe-induced gene expression changes resulting in neurite impairment and altered synaptic connectivity.


Asunto(s)
Perfilación de la Expresión Génica , Neuritas , Neuronas , Fenilalanina , Humanos , Fenilalanina/farmacología , Neuritas/metabolismo , Neuritas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Transcriptoma , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Fenilcetonurias/metabolismo , Fenilcetonurias/genética , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
2.
J Clin Med ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999426

RESUMEN

Background/Objectives: Numerous studies have demonstrated the safety and efficacy of intraarticular stem cell injections for treating osteoarthritic knee joints, reporting symptom reduction and pain relief within a few months of treatment. Here, we report the results of a 7-year follow-up after a single intraarticular injection of 0.5-1 × 107 autologous adipose tissue-derived mesenchymal stem cells in patients with OA (Kellgren-Lawrence grade 2 to 4). Methods: Nine patients were treated, and two patients had bilateral disease. Patients were evaluated clinically and radiologically using X-ray and MRI. A comprehensive statistical analysis was undertaken to evaluate the obtained results. Results: All clinical scores and range of motion significantly improved within the first six months after injection. At the 18-month time point, a significant improvement in cartilage structure was observed on MRI while X-ray showed no changes in subchondral bone of distal femur and proximal tibia. At the 60-month time point, the clinical scores were still improved compared to baseline, except for the range of motion, which decreased almost back to the baseline level. At 84 months, the clinical scores decreased significantly toward the baseline level, but the MRI structural characteristics of cartilage still remained significantly better than those measured at baseline. Conclusions: Adipose tissue-derived stem cell therapy has substantial long-term clinical effects on patients with knee osteoarthritis.

3.
Mol Diagn Ther ; 28(5): 645-663, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003674

RESUMEN

BACKGROUND: Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS: In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS: The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS: Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.


Asunto(s)
Epilepsia , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Epilepsia/genética , Femenino , Niño , Masculino , Preescolar , Adolescente , Lactante , Estudios de Asociación Genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Mutación , Terapia Molecular Dirigida
4.
Eur J Hum Genet ; 32(7): 858-863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38778080

RESUMEN

The ABC and ACMG variant classification systems were compared by asking mainly European clinical laboratories to classify variants in 10 challenging cases using both systems, and to state if the variant in question would be reported as a relevant result or not as a measure of clinical utility. In contrast to the ABC system, the ACMG system was not made to guide variant reporting but to determine the likelihood of pathogenicity. Nevertheless, this comparison is justified since the ACMG class determines variant reporting in many laboratories. Forty-three laboratories participated in the survey. In seven cases, the classification system used did not influence the reporting likelihood when variants labeled as "maybe report" after ACMG-based classification were included. In three cases of population frequent but disease-associated variants, there was a difference in favor of reporting after ABC classification. A possible reason is that ABC step C (standard variant comments) allows a variant to be reported in one clinical setting but not another, e.g., based on Bayesian-based likelihood calculation of clinical relevance. Finally, the selection of ACMG criteria was compared between 36 laboratories. When excluding criteria used by less than four laboratories (<10%), the average concordance rate was 46%. Taken together, ABC-based classification is more clear-cut than ACMG-based classification since molecular and clinical information is handled separately, and variant reporting can be adapted to the clinical question and phenotype. Furthermore, variants do not get a clinically inappropriate label, like pathogenic when not pathogenic in a clinical context, or variant of unknown significance when the significance is known.


Asunto(s)
Variación Genética , Humanos , Pruebas Genéticas/normas , Pruebas Genéticas/métodos
5.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446389

RESUMEN

Systemic sclerosis (SSc) is a complex autoimmune inflammatory disorder with multiple organ involvement. Skin changes present the hallmark of SSc and coincide with poor prognosis. Interstitial lung diseases (ILD) are the most widely reported complications in SSc patients and the primary cause of death. It has been proposed that the processes of autophagy and apoptosis could play a significant role in the pathogenesis and clinical course of different autoimmune diseases, and accordingly in SSc. In this manuscript, we review the current knowledge of autophagy and apoptosis processes in the skin and lungs of patients with SSc. Profiling of markers involved in these processes in skin cells can be useful to recognize the stage of fibrosis and can be used in the clinical stratification of patients. Furthermore, the knowledge of the molecular mechanisms underlying these processes enables the repurposing of already known drugs and the development of new biological therapeutics that aim to reverse fibrosis by promoting apoptosis and regulate autophagy in personalized treatment approach. In SSc-ILD patients, the molecular signature of the lung tissues of each patient could be a distinctive criterion in order to establish the correct lung pattern, which directly impacts the course and prognosis of the disease. In this case, resolving the role of tissue-specific markers, which could be detected in the circulation using sensitive molecular methods, would be an important step toward development of non-invasive diagnostic procedures that enable early and precise diagnosis and preventing the high mortality of this rare disease.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Pulmón , Enfermedades Pulmonares Intersticiales/etiología , Esclerodermia Sistémica/complicaciones , Fibrosis , Enfermedades Autoinmunes/complicaciones , Autofagia
6.
Diagnostics (Basel) ; 13(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36766577

RESUMEN

BACKGROUND: Perthes disease is a juvenile form of osteonecrosis of the femoral head that affects children under the age of 15. One hundred years after its discovery, some light has been shed on its etiology and the biological factors relevant to its etiology and disease severity. METHODS: The aim of this study was to summarize the literature findings on the biological factors relevant to the pathogenesis of Perthes disease, their diagnostic and clinical significance, and their therapeutic potential. A special focus on candidate genes as susceptibility factors and factors relevant to clinical severity was made, where studies reporting clinical or preclinical results were considered as the inclusion criteria. PubMed databases were searched by two independent researchers. Sixty-eight articles were included in this review. Results on the factors relevant to vascular involvement and inflammatory molecules indicated as factors that contribute to impaired bone remodeling have been summarized. Moreover, several candidate genes relevant to an active phase of the disease have been suggested as possible biological therapeutic targets. CONCLUSIONS: Delineation of molecular biomarkers that underlie the pathophysiological process of Perthes disease can allow for the provision of earlier and more accurate diagnoses of the disease and more precise follow-ups and treatment in the early phases of the disease.

7.
Life (Basel) ; 12(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36143432

RESUMEN

Glycogen storage diseases (GSDs) are rare metabolic monogenic disorders characterized by an excessive accumulation of glycogen in the cell. However, monogenic disorders are not simple regarding genotype-phenotype correlation. Genes outside the major disease-causing locus could have modulatory effect on GSDs, and thus explain the genotype-phenotype inconsistencies observed in these patients. Nowadays, when the sequencing of all clinically relevant genes, whole human exomes, and even whole human genomes is fast, easily available and affordable, we have a scientific obligation to holistically analyze data and draw smarter connections between genotype and phenotype. Recently, the importance of glycogen-selective autophagy for the pathophysiology of disorders of glycogen metabolism have been described. Therefore, in this manuscript, we review the potential role of genes involved in glycogen-selective autophagy as modifiers of GSDs. Given the small number of genes associated with glycogen-selective autophagy, we also include genes, transcription factors, and non-coding RNAs involved in autophagy. A cross-link with apoptosis is addressed. All these genes could be analyzed in GSD patients with unusual discrepancies between genotype and phenotype in order to discover genetic variants potentially modifying their phenotype. The discovery of modifier genes related to glycogen-selective autophagy and autophagy will start a new chapter in understanding of GSDs and enable the usage of autophagy-inducing drugs for the treatment of this group of rare-disease patients.

8.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445527

RESUMEN

Primary ciliary dyskinesia (PCD) is a disease caused by impaired function of motile cilia. PCD mainly affects the lungs and reproductive organs. Inheritance is autosomal recessive and X-linked. PCD patients have diverse clinical manifestations, thus making the establishment of proper diagnosis challenging. The utility of next-generation sequencing (NGS) technology for diagnostic purposes allows for better understanding of the PCD genetic background. However, identification of specific disease-causing variants is difficult. The main aim of this study was to create a unique guideline that will enable the standardization of the assessment of novel genetic variants within PCD-associated genes. The designed pipeline consists of three main steps: (1) sequencing, detection, and identification of genes/variants; (2) classification of variants according to their effect; and (3) variant characterization using in silico structural and functional analysis. The pipeline was validated through the analysis of the variants detected in a well-known PCD disease-causing gene (DNAI1) and the novel candidate gene (SPAG16). The application of this pipeline resulted in identification of potential disease-causing variants, as well as validation of the variants pathogenicity, through their analysis on transcriptional, translational, and posttranslational levels. The application of this pipeline leads to the confirmation of PCD diagnosis and enables a shift from candidate to PCD disease-causing gene.


Asunto(s)
Dineínas Axonemales/genética , Trastornos de la Motilidad Ciliar/diagnóstico , Marcadores Genéticos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Estudios de Casos y Controles , Trastornos de la Motilidad Ciliar/clasificación , Trastornos de la Motilidad Ciliar/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
9.
Endocrine ; 73(1): 196-202, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33715135

RESUMEN

BACKGROUND: Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder of adrenal steroidogenesis with a broad spectrum of clinical presentations, ranging from the severe classical salt-wasting (SW) and simple-virilizing (SV) form, to the mild nonclassical form. A large variety of CYP21A2 genotypes in correlation with phenotype have been described. MATERIALS AND METHODS: DNA samples from a 14-day-old male newborn with clinical and laboratory signs of SW CAH and family members were subjected for molecular analysis of the nine most common point CYP21A2 mutations by ACRS/PCR method. Direct DNA sequencing of the whole CYP21A2 gene was performed to detect the second mutant allele in the patient. The in silico predicting analysis and the crystal structure analysis of the mutated CYP21A2 protein have been performed. RESULTS: Molecular analysis confirmed that the patient was compound heterozygote carrying p.Q318X mutation inherited from the mother and a novel c.1271_1279delGTGCCCGCG (p.G424_R426del) variant in exon 10 inherited from the father. The in silico predicting software tools classified the novel mutation as pathogenic. Crystal structure analysis showed that the three residues affected by the novel in-frame deletion form several hydrogen bonds that could lead to impaired stability and function of the CYP21A2 protein. These findings were concordant with the patient's phenotype. The need of several molecular methods to elucidate the genotype in this patient has also been discussed. CONCLUSIONS: A novel 9 bp deletion in CYP21A2 gene with predicted pathogenic effect on the enzyme activity was detected in neonatal patient causing severe SW CAH.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Hiperplasia Suprarrenal Congénita/genética , Exones/genética , Genotipo , Humanos , Recién Nacido , Masculino , Mutación , Fenotipo , Esteroide 21-Hidroxilasa/genética
10.
J Med Biochem ; 39(4): 488-499, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33312066

RESUMEN

BACKGROUND: Since there are no certified therapeutics to treat COVID-19 patients, drug repurposing became important. With lack of time to test individual pharmacogenomics markers, population pharmacogenomics could be helpful in predicting a higher risk of developing adverse reactions and treatment failure in COVID-19 patients. Aim of our study was to identify pharmacogenes and pharmacogenomics markers associated with drugs recommended for COVID-19 treatment, chloroquine/hydroxychloroquine, azithromycin, lopinavir and ritonavir, in population of Serbia and other world populations. METHODS: Genotype information of 143 individuals of Serbian origin was extracted from database previously obtained using TruSight One Gene Panel (Illumina). Genotype data of individuals from different world populations were extracted from the 1000 Genome Project. Fisher's exact test was used for comparison of allele frequencies. RESULTS: We have identified 11 potential pharmacogenomics markers in 7 pharmacogenes relevant for COVID-19 treatment. Based on high alternative allele frequencies in population and the functional effect of the variants, ABCB1 rs1045642 and rs2032582 could be relevant for reduced clearance of azithromycin, lopinavir and ritonavir drugs and UGT1A7 rs17868323 for hyperbilirubinemia in ritonavir treated COVID-19 patients in Serbian population. SLCO1B1 rs4149056 is a potential marker of lopinavir response, especially in Italian population. Our results confirmed that pharmacogenomics profile of African population is different from the rest of the world. CONCLUSIONS: Considering population specific pharmacogenomics landscape, preemptive testing for pharmacogenes relevant for drugs used in COVID-19 treatment could contribute to better understanding of the inconsistency in therapy response and could be applied to improve the outcome of the COVID-19 patients.

11.
Infect Genet Evol ; 84: 104498, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771700

RESUMEN

New coronavirus SARS-CoV-2 is capable to infect humans and cause a novel disease COVID-19. Aiming to understand a host genetic component of COVID-19, we focused on variants in genes encoding proteases and genes involved in innate immunity that could be important for susceptibility and resistance to SARS-CoV-2 infection. Analysis of sequence data of coding regions of FURIN, PLG, PRSS1, TMPRSS11a, MBL2 and OAS1 genes in 143 unrelated individuals from Serbian population identified 22 variants with potential functional effect. In silico analyses (PolyPhen-2, SIFT, MutPred2 and Swiss-Pdb Viewer) predicted that 10 variants could impact the structure and/or function of proteins. These protein-altering variants (p.Gly146Ser in FURIN; p.Arg261His and p.Ala494Val in PLG; p.Asn54Lys in PRSS1; p.Arg52Cys, p.Gly54Asp and p.Gly57Glu in MBL2; p.Arg47Gln, p.Ile99Val and p.Arg130His in OAS1) may have predictive value for inter-individual differences in the response to the SARS-CoV-2 infection. Next, we performed comparative population analysis for the same variants using extracted data from the 1000 Genomes project. Population genetic variability was assessed using delta MAF and Fst statistics. Our study pointed to 7 variants in PLG, TMPRSS11a, MBL2 and OAS1 genes with noticeable divergence in allelic frequencies between populations worldwide. Three of them, all in MBL2 gene, were predicted to be damaging, making them the most promising population-specific markers related to SARS-CoV-2 infection. Comparing allelic frequencies between Serbian and other populations, we found that the highest level of genetic divergence related to selected loci was observed with African, followed by East Asian, Central and South American and South Asian populations. When compared with European populations, the highest divergence was observed with Italian population. In conclusion, we identified 4 variants in genes encoding proteases (FURIN, PLG and PRSS1) and 6 in genes involved in the innate immunity (MBL2 and OAS1) that might be relevant for the host response to SARS-CoV-2 infection.


Asunto(s)
Infecciones por Coronavirus/genética , Resistencia a la Enfermedad/genética , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Metagenómica , Peptidil-Dipeptidasa A/genética , Neumonía Viral/genética , Glicoproteína de la Espiga del Coronavirus/genética , Alelos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/inmunología , Proteínas del Ojo/genética , Proteínas del Ojo/inmunología , Furina/genética , Furina/inmunología , Frecuencia de los Genes , Variación Genética , Genoma Humano , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Pandemias , Peptidil-Dipeptidasa A/inmunología , Plasminógeno/genética , Plasminógeno/inmunología , Neumonía Viral/inmunología , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Tripsina/genética , Tripsina/inmunología
12.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32668217

RESUMEN

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Mutación/genética , Fenotipo , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre
13.
Eur J Med Genet ; 63(3): 103767, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31536830

RESUMEN

BACKGROUND: Glycogen storage disease type Ib (GSD-Ib) is an inherited metabolic disorder caused by autosomal recessive mutations in SLC37A4 coding for the glucose-6-phosphate transporter. Neutropenia represents major feature of GSD-Ib along with metabolic disturbances. Previous research in GSD-Ib patients did not reveal significant genotype-phenotype correlation. Our objective was to explore the frequency and severity of neutropenia and it's complications in relation to genotype of GSD-Ib patients. METHODS: We estimated cumulative incidence of neutropenia and severe neutropenia, relation of genotype to absolute neutrophil count (ANC), and dynamics of ANC during serious bacterial infections (SBI) in a cohort of Serbian GSD Ib patients. Impact of genotype on GSD Ib-related inflammatory bowel disease (IBD) was also assessed. RESULTS: Absolute neutrophil count (ANC) < 1500/mm3 was present in all 33 patients, with severe neutropenia (ANC<500/mm3) occurring in 60.6% of patients. The median age at neutropenia onset was 24 months, while severe neutropenia developed at median of 4.5 years. The ANC was elevated during 90.5% episodes of SBI. Genotypes c.81T>A/c.785G>A and c.81T>A/c.1042_1043delCT are associated with earlier onset of neutropenia. Patients carrying c.785G>A mutation express a higher capacity for ANC increase during SBI. Inflammatory bowel disease was diagnosed in 8 patients (24.2% of total) with median age of onset at 7 years. Risk for IBD occurrence was not significantly affected by gender, genotype and severity of neutropenia. CONCLUSIONS: We may conclude that certain mutations in SLC37A4 influence the risk for severe neutropenia occurrence but also affect the capacity to increase ANC during SBI.


Asunto(s)
Antiportadores/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedades Inflamatorias del Intestino/complicaciones , Proteínas de Transporte de Monosacáridos/genética , Neutropenia/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Genotipo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Humanos , Incidencia , Enfermedades Inflamatorias del Intestino/genética , Masculino , Mutación , Neutropenia/sangre , Neutropenia/líquido cefalorraquídeo , Neutropenia/fisiopatología , Neutrófilos/citología , Fenotipo , Serbia
15.
Nutrients ; 11(11)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731404

RESUMEN

Phenylketonuria (PKU) management is aimed at preventing neurocognitive and psychosocial dysfunction by keeping plasma phenylalanine concentrations within the recommended target range. It can be questioned, however, whether universal plasma phenylalanine target levels would result in optimal neurocognitive outcomes for all patients, as similar plasma phenylalanine concentrations do not seem to have the same consequences to the brain for each PKU individual. To better understand the inter-individual differences in brain vulnerability to high plasma phenylalanine concentrations, we aimed to identify untreated and/or late-diagnosed PKU patients with near-normal outcome, despite high plasma phenylalanine concentrations, who are still alive. In total, we identified 16 such cases. While intellectual functioning in these patients was relatively unaffected, they often did present other neurological, psychological, and behavioral problems. Thereby, these "unusual" PKU patients show that the classical symptomatology of untreated or late-treated PKU may have to be rewritten. Moreover, these cases show that a lack of intellectual dysfunction despite high plasma phenylalanine concentrations does not necessarily imply that these high phenylalanine concentrations have not been toxic to the brain. Also, these cases may suggest that different mechanisms are involved in PKU pathophysiology, of which the relative importance seems to differ between patients and possibly also with increasing age. Further research should aim to better distinguish PKU patients with respect to their cerebral effects to high plasma phenylalanine concentrations.


Asunto(s)
Fenilalanina/sangre , Fenilcetonurias/psicología , Adolescente , Adulto , Encéfalo/metabolismo , Niño , Diagnóstico Tardío , Femenino , Humanos , Individualidad , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Fenilcetonurias/sangre , Fenilcetonurias/diagnóstico , Adulto Joven
16.
Gene ; 703: 17-25, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30951856

RESUMEN

Glycogen storage disease type Ib (GSD Ib) is an autosomal recessive disorder, caused by a deficiency of ubiquitously expressed SLC37A4 protein. Deficiency of SLC37A4 leads to abnormal storage of glycogen in the liver and kidneys, resulting in long-term complications of renal disease and hepatocellular adenomas, whose mechanisms are poorly understood. Molecular markers of the adaptive responses to the metabolic stress caused by a deficiency of SLC37A4, such as markers related to the endoplasmic reticulum (ER) stress and unfolded protein response (UPR), have not been extensively studied. The aim of this study was to investigate the expression of molecular markers of the UPR response and apoptosis related to a deficiency of SLC37A4 in kidney cells. For that purpose, we intended to establish a human kidney cell model system for GSD Ib. The novel variant c.248G>A, found in GSD Ib patients, was introduced into the Flp-In™T-REx™-293 cell line using CRISPR/Cas9-mediated precise gene editing method, resulting in significant decrease of SLC37A4 gene expression. In this model system we used RT-qPCR analysis to investigate the expression of molecular markers of the UPR response (ATF4, DDIT3, HSPA5, and XBP1s) and apoptosis (BCL2, BAX). We demonstrated that under chronic metabolic stress conditions caused by SLC37A4 deficiency, the ER stress-induced UPR was triggered, resulting in suppression of the UPR molecular markers and cell survival promotion (decreased expression levels of ATF4, DDIT3, HSPA5, with the exception of XBP1s). However, persistent metabolic stress overrides an adaptation and induces apoptosis through increased expression of pro-apoptotic markers (decreased ratio of BCL2/BAX genes). We established a cellular model system characterized by a deficiency of SLC37A4, which presents pathological manifestations of GSD Ib in the kidney. Expression analysis in a novel model system supports the hypothesis that renal dysfunction in the GSD Ib is partly due to the ER stress and increased apoptosis.


Asunto(s)
Antiportadores/genética , Edición Génica/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedades Renales/etiología , Proteínas de Transporte de Monosacáridos/genética , Mutación Puntual , Apoptosis , Sistemas CRISPR-Cas , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Marcadores Genéticos , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Humanos , Enfermedades Renales/genética , Modelos Biológicos , Mutación , Respuesta de Proteína Desplegada
17.
PLoS One ; 13(10): e0205422, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30300419

RESUMEN

Primary ciliary dyskinesia (PCD) is a rare inherited autosomal recessive or X-linked disorder that mainly affects lungs. Dysfunction of respiratory cilia causes symptoms such as chronic rhinosinusitis, coughing, rhinitis, conductive hearing loss and recurrent lung infections with bronchiectasis. It is now well known that pathogenic genetic changes lead to ciliary dysfunction. Here we report usage of clinical-exome based NGS approach in order to reveal underlying genetic causes in cohort of 21 patient with diagnosis of PCD. By detecting 18 (12 novel) potentially pathogenic genetic variants, we established the genetic cause of 11 (9 unrelated) patients. Genetic variants were detected in six PCD disease-causing genes, as well as in SPAG16 and SPAG17 genes, that were not detected in PCD patients so far, but were related to some symptoms of PCD. The most frequently mutated gene in our cohort was DNAH5 (27.77%). Identified variants were in homozygous, compound heterozygous and trans-heterozygous state. For detailed characterization of one novel homozygous genetic variant in DNAI1 gene (c. 947_948insG, p. Thr318TyrfsTer11), RT-qPCR and Western Blot analysis were performed. Molecular diagnostic approach applied in this study enables analysis of 29 PCD disease-causing and related genes. It resulted in mutation detection rate of 50% and enabled discovery of twelve novel mutations and pointed two possible novel PCD candidate genes.


Asunto(s)
Variación Genética , Síndrome de Kartagener/diagnóstico , Adolescente , Adulto , Dineínas Axonemales/química , Dineínas Axonemales/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Mutación del Sistema de Lectura , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Síndrome de Kartagener/genética , Masculino , Proteínas de Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/genética , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Adulto Joven
18.
Orphanet J Rare Dis ; 13(1): 149, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157945

RESUMEN

BACKGROUND: Phenylketonuria (PKU) is often considered as the classical example of a genetic disorder in which severe symptoms can nowadays successfully be prevented by early diagnosis and treatment. In contrast, untreated or late-treated PKU is known to result in severe intellectual disability, seizures, and behavioral disturbances. Rarely, however, untreated or late-diagnosed PKU patients with high plasma phenylalanine concentrations have been reported to escape from intellectual disability. The present study aimed to review published cases of such PKU patients. METHODS: To this purpose, we conducted a literature search in PubMed and EMBASE up to 8th of September 2017 to identify cases with 1) PKU diagnosis and start of treatment after 7 years of age; 2) untreated plasma phenylalanine concentrations ≥1200 µmol/l; and 3) IQ ≥80. Literature search, checking reference lists, selection of articles, and extraction of data were performed by two independent researchers. RESULTS: In total, we identified 59 published cases of patients with late-diagnosed PKU and unexpected favorable outcome who met the inclusion criteria. Although all investigated patients had intellectual functioning within the normal range, at least 19 showed other neurological, psychological, and/or behavioral symptoms. CONCLUSIONS: Based on the present findings, the classical symptomatology of untreated or late-treated PKU may need to be rewritten, not only in the sense that intellectual dysfunction is not obligatory, but also in the sense that intellectual functioning does not (re)present the full picture of brain damage due to high plasma phenylalanine concentrations. Further identification of such patients and additional analyses are necessary to better understand these differences between PKU patients.


Asunto(s)
Discapacidad Intelectual/sangre , Discapacidad Intelectual/etiología , Fenilcetonurias/sangre , Fenilcetonurias/complicaciones , Femenino , Humanos , Masculino , Fenilalanina/sangre
19.
Biochem Genet ; 56(5): 533-541, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29654578

RESUMEN

Treatment with tetrahydrobiopterin (BH4) is the latest therapeutic option approved for patients with phenylketonuria (PKU)-one of the most frequent inborn metabolic diseases. PKU or phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene. Given that some PAH mutations are responsive to BH4 treatment while others are non-responsive, for every novel mutation that is discovered it is essential to confirm its pathogenic effect and to assess its responsiveness to a BH4 treatment in vitro, before the drug is administered to patients. We found a c.676C>A (p.Gln226Lys) mutation in the PAH gene in two unrelated patients with PKU. The corresponding aberrant protein has never been functionally characterized in vitro and its response to BH4 treatment is unknown. Computational analyses proposed that glutamine at position 226 is an important, evolutionary conserved amino acid while the substitution with lysine probably disturbs tertiary protein structure and impacts posttranslational PAH modifications. Using hepatoma cellular model, we demonstrated that the amount of mutant p.Gln226Lys PAH detected by Western blot was only 1.2% in comparison to wild-type PAH. The addition of sepiapterin, intracellular precursor of BH4, did not increase PAH protein yield thus marking p.Gln226Lys as BH4-non-responsive mutation. Therefore, computational, experimental, and clinical data were all in accordance showing that p.Gln226Lys is a severe pathogenic PAH mutation. Its non-responsiveness to BH4 treatment in hepatoma cellular model should be considered when deciding treatment options for PKU patients carrying this mutation. Consequently, our study will facilitate clinical genetic practice, particularly genotype-based stratification of PKU treatment.


Asunto(s)
Biopterinas/análogos & derivados , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Biopterinas/farmacología , Línea Celular Tumoral , Glutamina/genética , Humanos , Lisina/genética , Modelos Biológicos , Modelos Moleculares , Fenilalanina Hidroxilasa/química , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
20.
J Gene Med ; 20(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29243283

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a chronic degenerative joint disease and is considered to be the fourth leading cause of disability and the second cause of inability to work in men. Recently, adipose-derived mesenchymal stem cells (AD-MSCs) came into focus for regenerative medicine as a promising tool for the treatment of OA. The administration of stem cells into impaired joints results in pain relief and improves quality of life, accompanied by restoration of hyaline articular cartilage. METHODS: In the present study, nine patients (including two patients with bilateral symptoms) diagnosed with osteoarthritis (International Knee Documentation grade B in 5 and grade D in six knees) were treated using a single injection of AD-MSCs at a concentration of 0.5-1.0 × 107 cells and were followed up for 18 months. During follow-up, all the cases were evaluated clinically by Knee Society score (KSS), Hospital for Special Surgery knee score (HSS-KS), Tegner-Lysholm (T-L) score and visual analogue scale (VAS) of pain, as well as by plain radiography and by magnetic resonance imaging visualization with 2D Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score assessment. RESULTS: Significant improvement of all four clinical scores was observed within the first 6 months (KSS for 41.4 points, HSS-KS for 33.9 points, T-L score for 44.8 points, VAS of pain from 54.5 to 9.3) and improvement persisted throughout the rest of the follow-up. MOCART score showed significant cartilage restoration (from 43 ± 7.2 to 63 ± 17.1), whereas radiography showed neither improvement, nor further joint degeneration. CONCLUSIONS: The results obtained in the present study provide good basis for prospective randomized controlled clinical trials with respect to the use of AD-MSCs in the treatment of osteoarthritis.


Asunto(s)
Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Osteoartritis de la Rodilla/terapia , Adulto , Anciano , Células Cultivadas , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Intraarticulares , Masculino , Persona de Mediana Edad , Pronóstico , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA