Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(9): 1314-1322, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653243

RESUMEN

Translation affects messenger RNA stability and, in yeast, this is mediated by the Ccr4-Not deadenylation complex. The details of this process in mammals remain unclear. Here, we use cryogenic electron microscopy (cryo-EM) and crosslinking mass spectrometry to show that mammalian CCR4-NOT specifically recognizes ribosomes that are stalled during translation elongation in an in vitro reconstituted system with rabbit and human components. Similar to yeast, mammalian CCR4-NOT inserts a helical bundle of its CNOT3 subunit into the empty E site of the ribosome. Our cryo-EM structure shows that CNOT3 also locks the L1 stalk in an open conformation to inhibit further translation. CCR4-NOT is required for stable association of the nonconstitutive subunit CNOT4, which ubiquitinates the ribosome, likely to signal stalled translation elongation. Overall, our work shows that human CCR4-NOT not only detects but also enforces ribosomal stalling to couple translation and mRNA decay.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Animales , Conejos , Mamíferos , Ribosomas , Ubiquitinación , Espectrometría de Masas , Factores de Transcripción , Receptores CCR4 , Ribonucleasas
2.
Methods Mol Biol ; 2263: 321-339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877605

RESUMEN

Electrophoretic mobility shift assays (EMSAs) are among the most frequently used and straightforward experiments for studying protein-nucleic acid interactions. EMSAs rely on the principle that protein-nucleic acid complexes have reduced electrophoretic mobility in a native gel matrix compared to free nucleic acid due to their larger size and reduced negative charge. Therefore, bands for the protein-nucleic acid complexes are shifted in a gel and can be distinguished from free nucleic acids. EMSAs remain a popular technique since they do not require specialist equipment and the complexes formed are easily visualized. Furthermore, the technique can be adapted to enable various aspects of protein-nucleic acid interactions to be investigated, including sequence specificity, estimated binding affinity, and binding stoichiometry.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética/métodos , Ácidos Nucleicos/análisis , Proteínas/análisis , Resinas Acrílicas , Fenómenos Biofísicos , ADN/análisis , ADN/metabolismo , Ácidos Nucleicos/metabolismo , Unión Proteica , Proteínas/metabolismo , ARN/análisis , ARN/metabolismo
3.
Nat Struct Mol Biol ; 26(10): 988, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31420603

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Struct Mol Biol ; 26(6): 433-442, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110294

RESUMEN

The 3' poly(A) tail of messenger RNA is fundamental to regulating eukaryotic gene expression. Shortening of the poly(A) tail, termed deadenylation, reduces transcript stability and inhibits translation. Nonetheless, the mechanism for poly(A) recognition by the conserved deadenylase complexes Pan2-Pan3 and Ccr4-Not is poorly understood. Here we provide a model for poly(A) RNA recognition by two DEDD-family deadenylase enzymes, Pan2 and the Ccr4-Not nuclease Caf1. Crystal structures of Saccharomyces cerevisiae Pan2 in complex with RNA show that, surprisingly, Pan2 does not form canonical base-specific contacts. Instead, it recognizes the intrinsic stacked, helical conformation of poly(A) RNA. Using a fully reconstituted biochemical system, we show that disruption of this structure-for example, by incorporation of guanosine into poly(A)-inhibits deadenylation by both Pan2 and Caf1. Together, these data establish a paradigm for specific recognition of the conformation of poly(A) RNA by proteins that regulate gene expression.


Asunto(s)
Exorribonucleasas/metabolismo , Poli A/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Exorribonucleasas/química , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Poli A/química , ARN Mensajero/química , Ribonucleasas/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
5.
Elife ; 82019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30601114

RESUMEN

The Ccr4-Not complex removes mRNA poly(A) tails to regulate eukaryotic mRNA stability and translation. RNA-binding proteins contribute to specificity by interacting with both Ccr4-Not and target mRNAs, but this is not fully understood. Here, we reconstitute accelerated and selective deadenylation of RNAs containing AU-rich elements (AREs) and Pumilio-response elements (PREs). We find that the fission yeast homologues of Tristetraprolin/TTP and Pumilio/Puf (Zfs1 and Puf3) interact with Ccr4-Not via multiple regions within low-complexity sequences, suggestive of a multipartite interface that extends beyond previously defined interactions. Using a two-color assay to simultaneously monitor poly(A) tail removal from different RNAs, we demonstrate that Puf3 can distinguish between RNAs of very similar sequence. Analysis of binding kinetics reveals that this is primarily due to differences in dissociation rate constants. Consequently, motif quality is a major determinant of mRNA stability for Puf3 targets in vivo and can be used for the prediction of mRNA targets.


Asunto(s)
Motivos de Nucleótidos/genética , Poli A/genética , Proteínas de Unión al ARN/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliadenilación , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Células Sf9 , Spodoptera
6.
Mol Cell ; 70(6): 1089-1100.e8, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932902

RESUMEN

Translation and decay of eukaryotic mRNAs is controlled by shortening of the poly(A) tail and release of the poly(A)-binding protein Pab1/PABP. The Ccr4-Not complex contains two exonucleases-Ccr4 and Caf1/Pop2-that mediate mRNA deadenylation. Here, using a fully reconstituted biochemical system with proteins from the fission yeast Schizosaccharomyces pombe, we show that Pab1 interacts with Ccr4-Not, stimulates deadenylation, and differentiates the roles of the nuclease enzymes. Surprisingly, Pab1 release relies on Ccr4 activity. In agreement with this, in vivo experiments in budding yeast show that Ccr4 is a general deadenylase that acts on all mRNAs. In contrast, Caf1 only trims poly(A) not bound by Pab1. As a consequence, Caf1 is a specialized deadenylase required for the selective deadenylation of transcripts with lower rates of translation elongation and reduced Pab1 occupancy. These findings reveal a coupling between the rates of translation and deadenylation that is dependent on Pab1 and Ccr4-Not.


Asunto(s)
Exorribonucleasas/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Citoplasma/metabolismo , Endonucleasas/metabolismo , Exorribonucleasas/genética , Poli A/metabolismo , Poliadenilación , Estabilidad del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleasas/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
7.
J Biol Chem ; 293(24): 9210-9222, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29695507

RESUMEN

Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding.


Asunto(s)
ARN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN de Hongos/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Especificidad por Sustrato , Factores de Escisión y Poliadenilación de ARNm/química
8.
Methods ; 126: 95-104, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28624538

RESUMEN

Poly(A) tails are found at the 3' end of almost every eukaryotic mRNA and are important for the stability of mRNAs and their translation into proteins. Thus, removal of the poly(A) tail, a process called deadenylation, is critical for regulation of gene expression. Most deadenylation enzymes are components of large multi-protein complexes. Here, we describe an in vitro deadenylation assay developed to study the exonucleolytic activities of the multi-protein Ccr4-Not and Pan2-Pan3 complexes. We discuss how this assay can be used with short synthetic RNAs, as well as longer RNA substrates generated using in vitro transcription. Importantly, quantitation of the reactions allows detailed analyses of deadenylation in the presence and absence of accessory factors, leading to new insights into targeted mRNA decay.


Asunto(s)
Complejos Multiproteicos/genética , Poliadenilación/fisiología , ARN Mensajero/genética , Complejos Multiproteicos/análisis , Complejos Multiproteicos/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Saccharomyces cerevisiae
9.
Cell Rep ; 17(8): 1978-1989, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851962

RESUMEN

Ccr4-Not is a conserved protein complex that shortens the 3' poly(A) tails of eukaryotic mRNAs to regulate transcript stability and translation into proteins. RNA-binding proteins are thought to facilitate recruitment of Ccr4-Not to certain mRNAs, but lack of an in-vitro-reconstituted system has slowed progress in understanding the mechanistic details of this specificity. Here, we generate a fully recombinant Ccr4-Not complex that removes poly(A) tails from RNA substrates. The intact complex is more active than the exonucleases alone and has an intrinsic preference for certain RNAs. The RNA-binding protein Mmi1 is highly abundant in preparations of native Ccr4-Not. We demonstrate a high-affinity interaction between recombinant Ccr4-Not and Mmi1. Using in vitro assays, we show that Mmi1 accelerates deadenylation of target RNAs. Together, our results support a model whereby both RNA-binding proteins and the sequence context of mRNAs influence deadenylation rate to regulate gene expression.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Adenina/metabolismo , Secuencia de Aminoácidos , Exorribonucleasas/metabolismo , Poli A/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(19): 6033-7, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25902496

RESUMEN

The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzymes is conserved, it is unclear how the same protein fold can be reprogrammed to ensure that nucleotides exposed at spatially distinct faces of tRNA can be accommodated in the same active site. We show that the Escherichia coli DusC is specific toward U16 of tRNA. Unexpectedly, crystal structures of DusC complexes with tRNA(Phe) and tRNA(Trp) show that Dus subfamilies that selectively modify U16 or U20 in tRNA adopt identical folds but bind their respective tRNA substrates in an almost reverse orientation that differs by a 160° rotation. The tRNA docking orientation appears to be guided by subfamily-specific clusters of amino acids ("binding signatures") together with differences in the shape of the positively charged tRNA-binding surfaces. tRNA orientations are further constrained by positional differences between the C-terminal "recognition" domains. The exquisite substrate specificity of Dus enzymes is therefore controlled by a relatively simple mechanism involving major reorientation of the whole tRNA molecule. Such reprogramming of the enzymatic specificity appears to be a unique evolutionary solution for altering tRNA recognition by the same protein fold.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Oxidorreductasas/química , ARN de Transferencia/química , Aminoácidos/química , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Unión Proteica , Pliegue de Proteína , ARN/química , Proteínas de Unión al ARN/química , Especificidad por Sustrato , Uridina/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA