Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 40(19): 5642-54, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11341829

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) attenuates insulin signaling by catalyzing dephosphorylation of insulin receptors (IR) and is an attractive target of potential new drugs for treating the insulin resistance that is central to type II diabetes. Several analogues of cholecystokinin(26)(-)(33) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide, N-acetyl-Asp-Tyr(SO(3)H)-Nle-, was shown to be necessary and sufficient for inhibition. This tripeptide was modified to reduce size and peptide character, and to replace the metabolically unstable sulfotyrosyl group. This led to the discovery of a novel phosphotyrosine bioisostere, 2-carboxymethoxybenzoic acid, and to analogues that were >100-fold more potent than the CCK-8 analogues and >10-fold selective for PTP1B over two other PTP enzymes (LAR and SHP-2), a dual specificity phosphatase (cdc25b), and a serine/threonine phosphatase (calcineurin). These inhibitors disrupted the binding of PTP1B to activated IR in vitro and prevented the loss of tyrosine kinase (IRTK) activity that accompanied PTP1B-catalyzed dephosphorylation of IR. Introduction of these poorly cell permeant inhibitors into insulin-treated cells by microinjection (oocytes) or by esterification to more lipophilic proinhibitors (3T3-L1 adipocytes and L6 myocytes) resulted in increased potency, but not efficacy, of insulin. In some instances, PTP1B inhibitors were insulin-mimetic, suggesting that in unstimulated cells PTP1B may suppress basal IRTK activity. X-ray crystallography of PTP1B-inhibitor complexes revealed that binding of an inhibitor incorporating phenyl-O-malonic acid as a phosphotyrosine bioisostere occurred with the mobile WPD loop in the open conformation, while a closely related inhibitor with a 2-carboxymethoxybenzoic acid bioisostere bound with the WPD loop closed, perhaps accounting for its superior potency. These CCK-derived peptidomimetic inhibitors of PTP1B represent a novel template for further development of potent, selective inhibitors, and their cell activity further justifies the selection of PTP1B as a therapeutic target.


Asunto(s)
Inhibidores Enzimáticos/química , Insulina/farmacología , Imitación Molecular , Péptidos/química , Fosfotirosina/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Células 3T3 , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células CHO , Células CACO-2 , Cricetinae , Cristalografía por Rayos X , Sinergismo Farmacológico , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Isomerismo , Ratones , Datos de Secuencia Molecular , Péptidos/metabolismo , Péptidos/farmacología , Fosfotirosina/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Sincalida/análogos & derivados , Sincalida/química , Sincalida/metabolismo , Sincalida/farmacología , Soluciones , Xenopus laevis
2.
J Med Chem ; 42(9): 1525-36, 1999 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-10229623

RESUMEN

The synthesis and enzyme inhibition data for a series of thiadiazole urea matrix metalloproteinase (MMP) inhibitors are described. A broad screening effort was utilized to identify several thiadiazoles which were weak inhibitors of stromelysin. Optimization of the thiadiazole leads to include an alpha-amino acid side chain with variable terminal amide substituents provided a series of ureas which were moderately effective stromelysin inhibitors, with Ki's between 0.3 and 1.0 microM. The most effective analogues utilized an L-phenylalanine as the amino acid component. In particular, unsubstituted 46 had a Ki of 710 nM, while the p-fluoro analogue 52 displayed increased potency (100 nM). Stromelysin inhibition was further improved using a pentafluorophenylalanine substituent which resulted in 70, a 14 nM inhibitor. While gelatinase inhibition was generally poor, the use of 1-(2-pyridyl)piperazine as the amide component usually provided for enhanced activity, with 71 inhibiting gelatinase with a Ki of 770 nM. The combination of this heterocycle with a p-fluorophenylalanine substituent provided the only analogue, 69, with collagenase activity (13 microM). The SAR for analogues described within this series can be rationalized through consideration of the X-ray structure recently attained for70 complexed to stromelysin. Uniquely, this structure showed the inhibitor to be completely orientated on the left side of the enzyme cleft. These results suggest that thiadiazole urea heterocycles which incorporate a substituted phenylalanine can provide selective inhibitors of stromelysin. Careful selection of the amide substituent can also provide for analogues with modest gelatinase inhibition.


Asunto(s)
Inhibidores de la Metaloproteinasa de la Matriz , Inhibidores de Proteasas/síntesis química , Tiadiazoles/síntesis química , Urea/análogos & derivados , Urea/síntesis química , Sitios de Unión , Fluorescencia , Humanos , Modelos Moleculares , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Relación Estructura-Actividad , Tiadiazoles/química , Tiadiazoles/farmacología , Urea/química , Urea/farmacología
3.
J Protein Chem ; 17(7): 699-712, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9853686

RESUMEN

The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2'-P3' region of the active site. In contrast, the inhibitor CGS27023A, which is thought to bind in the P1-P1' region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant of Ki=22 microM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40+/-0.17 microM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.


Asunto(s)
Naftalenosulfonatos de Anilina , Colorantes Fluorescentes , Metaloproteinasa 3 de la Matriz/química , Pirazinas , Triptófano , Acrilamidas , Sitios de Unión , Dominio Catalítico , Polarización de Fluorescencia , Ácidos Hidroxámicos/farmacología , Metaloproteinasa 3 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz , Modelos Químicos , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Inhibidores de Proteasas/farmacología , Unión Proteica , Espectrometría de Fluorescencia , Sulfonamidas/farmacología , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...