Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 45(8): 2375-2378, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287236

RESUMEN

In the present Letter, we experimentally investigate extreme events in the time dynamics of the random distributed feedback fiber laser. We find that the probability of extreme events depends on the wavelength of the generated light. On spectrum tails, we register extreme events with intensity up to 50 times higher than the average generation power. Analysis of return times between successive rogue waves reveals their exponential distribution. Further investigation proves that the appearance of extreme waves in laser radiation obeys Poisson law. Characteristic radiation time varies from nanoseconds to tens of microseconds for most intense waves.

2.
Opt Lett ; 44(6): 1516-1519, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874690

RESUMEN

Nonlinear interactions between different components of multiwavelength radiation are one of the main processes shaping properties of quasi-CW fiber lasers. In random fiber lasers, nonlinear influence may be more complicated, as there are no distinct longitudinal modes in radiation because of the random nature of the feedback. In this Letter, we experimentally characterize internal correlations in the radiation of a multiwavelength random distributed feedback fiber laser. An analysis of Pearson correlation functions allows us to spatially locate the area over the fiber laser length in which correlations are more likely to occur. This, in turn, leads us to the conclusion about the main mechanism of spectral correlations-the relative intensity noise transfer from the pump wave.

3.
Opt Express ; 25(19): 23122-23127, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041615

RESUMEN

We experimentally study spatio-temporal generation of extreme events in the radiation of NPE mode-locked fibre laser generating noise-like pulses. We show that new pulses starts from high-intensity spatio-temporal structure which consist of mainly 3 subsequent pulses which are both separated over fast and slow evolution time. Statistical analysis of the noise-like pulse evolution over round-trips shows that the pulse width and intensity varies with a period of around 85 round-trips which does not change from pulse to pulse. The intensity probability density function has a heavy tail originated only from events of pulse formation.

4.
Opt Express ; 24(17): 19417-23, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557219

RESUMEN

In the presented paper, the temporal and statistical properties of a Lyot filter based multiwavelength random DFB fiber laser with a wide flat spectrum, consisting of individual lines, were investigated. It was shown that separate spectral lines forming the laser spectrum have mostly Gaussian statistics and so represent stochastic radiation, but at the same time the entire radiation is not fully stochastic. A simple model, taking into account phenomenological correlations of the lines' initial phases was established. Radiation structure in the experiment and simulation proved to be different, demanding interactions between different lines to be described via a NLSE-based model.

5.
Nat Commun ; 6: 7004, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947951

RESUMEN

Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.

6.
Opt Express ; 22(23): 28071-6, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402047

RESUMEN

We introduce a general technique how to reveal in experiments of limited electrical bandwidth which is lower than the optical bandwidth of the optical signal under study, whether the statistical properties of the light source obey Gaussian distribution or mode correlations do exist. To do that one needs to perform measurements by decreasing the measurement bandwidth. We develop a simple model of bandwidth-limited measurements and predict universal laws how intensity probability density function and intensity auto-correlation function of ideal completely stochastic source of Gaussian statistics depend on limited measurement bandwidth and measurement noise level. Results of experimental investigation are in good agreement with model predictions. In particular, we reveal partial mode correlations in the radiation of quasi-CW Raman fibre laser.


Asunto(s)
Biometría/métodos , Rayos Láser , Luz , Modelos Teóricos , Diseño de Equipo
7.
Opt Express ; 22(3): 2839-44, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663575

RESUMEN

Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA