Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nucl Med Commun ; 45(1): 68-76, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728607

RESUMEN

BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and Roundabout homolog 1 (ROBO1) is frequently expressed in SCLC. ROBO1-targeted radioimmunotherapy (RIT) previously showed tumor shrinkage, but regrowth with fibroblast infiltration was observed. The fibroblasts would support tumor survival by secreting growth factors and cytokines. Inhibition of fibroblasts offers a candidate strategy for increasing RIT efficacy. Here, we evaluated the efficacy of combination therapy with 90 Y-labeled anti-ROBO1 antibody B5209B ( 90 Y-B5209B) and the tyrosine kinase inhibitor nintedanib in SCLC xenograft mice. METHODS: Subcutaneous NCI-H69 SCLC xenograft mice were divided into four groups: saline, nintedanib alone, RIT alone, and a combination of RIT with nintedanib (combination). A single dose of 7.4 MBq of 90 Y-B5209B was injected intravenously. Nintedanib was orally administered at a dose of 400 µg five times a week for 4 weeks. Tumor volumes and body weights were measured regularly. Tumor sections were stained with hematoxylin and eosin or Masson trichrome. RESULTS: All six tumors in the combination therapy group disappeared, and four tumors showed no regrowth. Although RIT alone induced similar tumor shrinkage, regrowth was observed. Prolonged survival in the combination therapy group was found compared with the other groups. Temporary body weight loss was observed in RIT and combination therapy. There is no difference in fibroblast infiltration between RIT alone and the combination. CONCLUSION: Nintedanib significantly enhanced the anti-tumor effects of RIT with the 90 Y-B5209B without an increase in toxicity. These findings encourage further research into the potential clinical application of combining RIT with nintedanib.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Animales , Ratones , Radioinmunoterapia , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Proteínas del Tejido Nervioso , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Xenoinjertos , Receptores Inmunológicos
2.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38004392

RESUMEN

Auger electrons can cause nanoscale physiochemical damage to specific DNA sites that play a key role in cancer cell survival. Radio-Pt is a promising Auger-electron source for damaging DNA efficiently because of its ability to bind to DNA. Considering that the cancer genome is maintained under abnormal gene amplification and expression, here, we developed a novel 191Pt-labeled agent based on pyrrole-imidazole polyamide (PIP), targeting the oncogene MYCN amplified in human neuroblastoma, and investigated its targeting ability and damaging effects. A conjugate of MYCN-targeting PIP and Cys-(Arg)3-coumarin was labeled with 191Pt via Cys (191Pt-MYCN-PIP) with a radiochemical purity of >99%. The binding potential of 191Pt-MYCN-PIP was evaluated via the gel electrophoretic mobility shift assay, suggesting that the radioagent bound to the DNA including the target sequence of the MYCN gene. In vitro assays using human neuroblastoma cells showed that 191Pt-MYCN-PIP bound to DNA efficiently and caused DNA damage, decreasing MYCN gene expression and MYCN signals in in situ hybridization analysis, as well as cell viability, especially in MYCN-amplified Kelly cells. 191Pt-MYCN-PIP also induced a substantial increase in cytosolic dsDNA granules and generated proinflammatory cytokines, IFN-α/ß, in Kelly cells. Tumor uptake of intravenously injected 191Pt-MYCN-PIP was low and its delivery to tumors should be improved for therapeutic application. The present results provided a potential strategy, targeting the key oncogenes for cancer survival for Auger electron therapy.

3.
Cancer Sci ; 114(12): 4677-4690, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37781962

RESUMEN

To select the most suitable chelate for 225 Ac radiolabeling of the anti-FZD10 antibody OTSA101, we directly compared three chelates: S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2,2',2″-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (p-SCN-Bn-DOTAGA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DO3A-NHS-ester). We evaluated the binding affinity of the chelate-conjugated OTSA101 antibodies, as well as the labeling efficiency and stability in murine serum of 225 Ac-labeled OTSA101 as in vitro properties. The biodistribution, intratumoral distribution, absorbed doses, and therapeutic effects of the chelate-conjugated OTSA101 antibodies were assessed in the synovial sarcoma mouse model SYO-1. Of the three conjugates, DOTAGA conjugation had the smallest impact on the binding affinity (p < 0.01). The labeling efficiencies of DOTAGA-OTSA101 and DO3A-OTSA101 were 1.8-fold higher than that of DOTA-OTSA101 (p < 0.01). The stabilities were similar between 225 Ac-labeled DOTA-OTSA101, DOTAGA-OTSA101, and DO3A-OTSA101in serum at 37 and 4°C. The dosimetric analysis based on the biodistribution revealed significantly higher tumor-absorbed doses by 225 Ac-labeled DOTA-OTSA101 and DOTAGA-OTSA101 compared with 225 Ac-DO3A-OTSA101 (p < 0.05). 225 Ac-DOTAGA-OTSA101 exhibited the highest tumor-to-bone marrow ratio, with bone marrow being the dose-limiting tissue. The therapeutic and adverse effects were not significantly different between the three conjugates. Our findings indicate that among the three evaluated chelates, DOTAGA appears to be the most promising chelate to produce 225 Ac-labeled OTSA101 with high binding affinity and high radiochemical yields while providing high absorbed doses to tumors and limited absorbed doses to bone marrow.


Asunto(s)
Quelantes , Neoplasias , Animales , Ratones , Distribución Tisular , Quelantes/química , Ésteres
4.
Cancer Rep (Hoboken) ; 6(12): e1909, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37840014

RESUMEN

BACKGROUND: Osteoblastic skeletal metastasis is frequently observed in prostate cancer. An effective therapy has not been developed due to the unclear molecular mechanism. The Wnt family is involved in various biological phenomena including bone metabolism. There is no direct evidence that the family causes osteoblastic skeletal metastasis. AIMS: The present study aims to evaluate whether overexpressed Wnt induces osteoblastic bone metastasis in a well-established osteolytic bone metastatic model. METHODS AND RESULTS: The breast cancer-derived 5a-D-Luc-ZsGreen cells were transfected with Wnt1, Wnt3A, and Wnt5A expression vectors, producing stably highly expressing cells. These cells were intracardially transplanted in nude mice. Bone metastasis development was confirmed by fluorescence imaging. Hind-limb bones including metastasis were dissected and visualized through micro-CT imaging. After imaging, sections were stained with hematoxylin and eosin (H&E), and immunohistochemically stained with an anti-SATB2 antibody. Luminescent imaging confirmed mice with bone metastases in the hind limbs. Micro-CT imaging found an osteoblastic change only in bone metastasis of mice transplanted with Wnt1-expressing cells. This was confirmed on H&E-stained sections. SATB2 immunostaining showed differentiated osteoblasts were at the site of bone metastases in the diaphysis. SATB2 in the Wnt/ß-catenin pathway activated by overexpressed Wnt1 could induce osteoblastic change. CONCLUSION: Our findings provided direct evidence Wnt1 is involved in osteoblastic bone metastasis development. Our model would be a powerful tool for further elucidating molecular mechanisms underlying the disease and developing effective therapies.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Masculino , Ratones , Humanos , Animales , Ratones Desnudos , Neoplasias Óseas/secundario , Neoplasias de la Próstata/patología
5.
J Control Release ; 352: 328-337, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280153

RESUMEN

Chemotherapy for peritoneal dissemination is poorly effective owing to limited drug transfer from the blood to the intraperitoneal (i.p.) compartment after intravenous (i.v.) administration. i.p. chemotherapy has been investigated to improve drug delivery to tumors; however, the efficacy continues to be debated. As anticancer drugs have low molecular weight and are rapidly excreted through the peritoneal blood vessels, maintaining the i.p. concentration as high as expected is a challenge. In this study, we examined whether i.p. administration is an efficient route of administration of high-molecular-weight immune checkpoint inhibitors (ICIs) for the treatment of peritoneal dissemination using a model of peritoneal disseminated carcinoma. After i.p. administration, the amount of anti-PD-L1 antibody transferred into i.p. tumors increased by approximately eight folds compared to that after i.v. administration. Intratumoral distribution analysis revealed that anti-PD-L1 antibodies were delivered directly from the i.p. space to the surface of tumor tissue, and that they deeply penetrated the tumor tissues after i.p. administration; in contrast, after i.v. administration, anti-PD-L1 antibodies were only distributed around blood vessels in tumor tissues via the enhanced permeability and retention (EPR) effect. Owing to the enhanced delivery, the therapeutic efficacy of anti-PD-L1 antibody in the peritoneal dissemination models was also improved after i.p. administration compared to that after i.v. administration. This is the first study to clearly demonstrate an EPR-independent delivery of ICIs to i.p. tumors by which ICIs were delivered in a massive amount to the tumor tissue via direct penetration after i.p. administration.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos , Permeabilidad
6.
Nucl Med Commun ; 43(11): 1121-1127, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36120823

RESUMEN

OBJECTIVE: The platinum-based antineoplastic drug cisplatin is commonly used for chemotherapy in clinics. This work aims to demonstrate a radio-platinum tracer is useful for precisely quantifying small amounts of platinum in pharmacokinetics studies. METHODS: A cisplatin radiotracer (radio-cisplatin) was synthesized, and a comprehensive evaluation of cisplatin over 7 days after its intravenous injection into nude mice bearing a subcutaneous lung tumor (H460) was conducted. RESULTS: A biphasic retention curve in the whole body and blood was observed [ T1/2 (α) = 1.14 h, T1/2 (ß) = 5.33 days for the whole body, and T1/2 (α) = 23.9 min, T1/2 (ß) = 4.72 days for blood]. The blood concentration decreased within 1 day after injection. Most of the intact cisplatin was excreted via the kidneys in the early time points, and a small part was distributed in tissues including tumors. The plasma protein binding rate of cisplatin increased rapidly after injection, and the protein-bound cisplatin remained in the blood longer than intact cisplatin. The peak uptake in H460 tumors was 4.7% injected dose per gram at 15 min after injection, and the area under the curve (AUC 0-7 days ) was approximately one-half to one-third of the AUC 0-7 days in the kidneys, liver, and bone, where some toxicity is observed in humans. CONCLUSION: The radio-platinum tracer revealed the highly quantitative biodistribution of cisplatin, providing insights into the properties of cisplatin, including its adverse effects. The tracer enables a precise evaluation of pharmacokinetics for platinum-based drugs with high sensitivity.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Cisplatino , Humanos , Ratones , Ratones Desnudos , Platino (Metal)/farmacocinética , Distribución Tisular
7.
J Cancer Res Ther ; 18(4): 907-914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36149139

RESUMEN

Background: Gastric cancer is a common cause of cancer-related death worldwide, and peritoneal dissemination is the most frequent metastatic pattern of gastric cancer. However, the treatment of this disease condition remains difficult. It has been demonstrated that intraperitoneal radioimmunotherapy (ipRIT) with 64Cu-labeled cetuximab (anti-epidermal growth factor receptor antibody; 64Cu-cetuximab) is a potential treatment for peritoneal dissemination of gastrointestinal cancer in vivo. Recent preclinical and clinical studies have also shown that a histone deacetylase inhibitor, vorinostat, effectively sensitized gastrointestinal cancer to external radiation. Aim: In the present study, we examined the efficacy of the combined use of vorinostat, as a radiosensitizer during ipRIT with 64Cu-cetuximab in a peritoneal dissemination mouse model with human gastric cancer NUGC4 cells stably expressing red fluorescent protein. Methods: The mouse model was treated by ipRIT with 64Cu-cetuximab plus vorinostat, each single treatment, or saline (control). Side effects, including hematological and biochemical parameters, were evaluated in similarly treated, tumor-free mice. Results: Coadministration of ipRIT with 64Cu-cetuximab + vorinostat significantly prolonged survival compared to control and each single treatment. No significant toxicity signals were observed in all treatment groups. Conclusions: Our data suggest that vorinostat is a potentially effective radiosensitizer for use during the treatment of peritoneal dissemination of gastric cancer by ipRIT with 64Cu-cetuximab.


Asunto(s)
Fármacos Sensibilizantes a Radiaciones , Neoplasias Gástricas , Animales , Línea Celular Tumoral , Cetuximab/uso terapéutico , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Fármacos Sensibilizantes a Radiaciones/farmacología , Radioinmunoterapia , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/radioterapia , Vorinostat
8.
Transl Oncol ; 23: 101481, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35820360

RESUMEN

CD137 is an attractive target for cancer immunotherapy, but its expression in normal tissues induces some adverse effects in patients receiving CD137-targeted therapy. To overcome this issue, we developed a switch antibody, STA551, that binds to CD137 only under high ATP concentrations around cells. This study quantified biodistribution of murine switch antibodies in human CD137 knock-in mice to show the viability of the switch antibody concept in vivo. We utilized four antibodies: Sta-MB, Ure-MB, Sta-mIgG1, and KLH-MB. Sta-MB is a switch antibody having the variable region of STA551. The MB is a murine Fc highly binding to murine Fcγ receptor II. Ure-MB has a variable region mimicking the clinically available anti-CD137 agonist antibody urelumab, binding to CD137 regardless of ATP concentration. Sta-mIgG1 has the same variable region as Sta-MB but has the standard murine constant region. KLH-MB binds to keyhole limpet hemocyanin. The four antibodies were radiolabeled with In-111, SPECT/CT imaging was conducted in human CD137 knock-in mice, and the uptake in regions of interest was quantified. 111In-labeled Sta-MB and Sta-mIgG1 showed high uptake in tumors but low uptake in the lymph nodes and spleen in human CD137 knock-in mice. On the other hand, Ure-MB highly accumulated not only in tumors but also in the lymph nodes and spleen. KLH-MB showed low uptake in the tumors, lymph nodes, and spleen. The present study provides evidence that the switch antibody concept works in vivo. Our findings encourage further clinical imaging studies to evaluate the biodistribution of STA551 in patients.

9.
Int J Mol Sci ; 23(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35628616

RESUMEN

Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.


Asunto(s)
Neoplasias Pancreáticas , Radioinmunoterapia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Estudios de Factibilidad , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas
10.
Transl Oncol ; 15(1): 101285, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34839108

RESUMEN

α-Sulfoquinovosylacyl-1,3-propanediol (SQAP) is a semi-synthetic derivative of natural sulfoglycolipid that sensitizes tumors to external-beam radiotherapy. How SQAP affects internal radiotherapy, however, is not known. Here, we investigated the effects of SQAP for radioimmunotherapy (RIT) targeting tissue factor (TF) in a stroma-rich refractory pancreatic cancer mouse model, BxPC-3. A low dose of SQAP (2 mg/kg) increased tumor uptake of the 111In-labeled anti-TF antibody 1849, indicating increased tumor perfusion. The addition of SQAP enhanced the growth-inhibitory effect of 90Y-labeled 1849 without leading to severe body weight changes, allowing for the dose of 90Y-labeled 1849 to be reduced to half that when used alone. Histologic analysis revealed few necrotic and apoptotic cells, but Ki-67-positive proliferating cells and increased vascular formation were detected. These results suggest that the addition of a low dose of SQAP may improve the therapeutic efficacy of TF-targeted RIT by increasing tumor perfusion, even for stroma-rich refractory pancreatic cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA