Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nano Lett ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347814

RESUMEN

Reproducing neural functions with artificial nanofluidic systems has long been an aspirational goal for neuromorphic computing. In this study, neural functions, such as neural activation and synaptic plasticity, are successfully accomplished with a polarity-switchable nanofluidic memristor (PSNM), which is based on the anodized aluminum oxide (AAO) nanochannel array. The PSNM has unipolar memristive behavior at high electrolyte concentrations and bipolar memristive behavior at low electrolyte concentrations, which can emulate neural activation and synaptic plasticity, respectively. The mechanisms for the unipolar and bipolar memristive behaviors are related to the polyelectrolytic Wien (PEW) effect and ion accumulation/depletion effect, respectively. These findings are beneficial to the advancement of neuromorphic computing on nanofluidic platforms.

2.
Environ Sci Technol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250774

RESUMEN

Firefighting foam is a significant source of per- and polyfluoroalkyl substances (PFAS) pollution, yet the PFAS profiles in foam formulations, particularly in China, remain unclear. Here, using target and nontarget analyses, we investigated 50 target PFAS in firefighting foams currently utilized in China, identified novel PFAS, and discovered new end products through a total oxidizable precursor (TOP) assay. We identified a total of 54 PFAS compounds (spanning 34 classes and containing seven novel PFAS) with total PFAS concentrations of 0.03-21.21 mM. Among seven novel PFAS, four PFAS met persistence, bioaccumulation, and toxicity criteria, and another PFAS had the highest ToxPi score among the identified 54 PFAS. Moreover, the predominant PFAS varied significantly in the studied foams and differed markedly from those used in other countries. After the TOP assay, nontarget analysis uncovered 1.1-55.5% more PFAS precursors and 8.25-55.5% more fluorine equivalents compared to traditional target analysis combined with TOP assay. Specifically, three double-bond perfluorinated alcohols were identified for the first time as end products of the TOP assay. This study provides crucial information for pollution control and risk assessment associated with PFAS in firefighting foam applications and emphasizes the importance of combining nontarget analysis with TOP assay in uncovering unknown PFAS precursors.

3.
Chemosphere ; 365: 143332, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271075

RESUMEN

Groundwater is an essential source of drinking water and agricultural irrigation water, and its protection has become a global goal for public health. However, knowledge about heavy metal(loid) resistance genes (MRGs) in groundwater and the potential co-selection of antibiotic resistance genes (ARGs) have seldom been developed. Here, during the wet and dry seasons, we collected 66 groundwater samples (total dissolved solids = 93.9-9530 mg/L) adjacent to Baiyangdian Lake in Northern China, which presented the few metal(loid) and antibiotic contamination. We identified 160 MRGs whose composition exhibited significant seasonal variation, and dissolved metal(loid)s (particularly Ba) played a determinative role in promoting the MRGs proliferation though with relatively low concentrations, suggesting the relatively vulnerable groundwater ecosystems. Moreover, 27.4% of MRG-carrying metagenome-assembled genomes (MAGs) simultaneously carried ARGs, with the most frequently detected MRG types of Cu, Hg, and As, and ARG types of multidrug and bacitracin. Physicochemical variables, variables related to total dissolved solids, metal(loid)s, and antibiotics synthetically shaped the variation of MRG-ARG hosts in groundwater. We found that the increase of MRG-ARG hosts was critically responsible for the spread of MRGs and ARGs in groundwater. Our findings revealed the widespread co-occurrence of MRGs and ARGs in few-contaminated groundwater and highlighted the crucial roles of salinity in their propagation and transmission.

4.
J Hazard Mater ; 477: 135399, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096643

RESUMEN

Through a systematic review of literature references from 2007 to 2022, we compiled a comprehensive national dataset comprising over 67,000 records and covering information on 129 antibiotics detected in the surface water and sediments of China's major rivers. Our analysis revealed notably high antibiotic concentrations in the Liaohe and Yellow Rivers. Among the antibiotics examined, sulfonamides, quinolones, and tetracyclines exhibited relatively high median concentrations in river water. Regional distribution analysis highlighted increased antibiotic levels in Shandong and Tianjin compared to other areas. Partial least squares path modeling revealed that animal production and pollution discharge positively influenced antibiotic levels in river water, whereas natural and socioeconomic factors had negative impacts. Based on the ecological risk assessment, we formulated a prioritized national list of antibiotics, with sulfonamides having the largest number of entries, followed by quinolones. Importantly, our analysis revealed a declining trend in antibiotic concentrations and the associated risk levels across China during the study period. This study not only enhances our understanding of antibiotic distribution in China's water systems, but also contributes to the development of a scientifically sound approach for prioritizing antibiotics. Ultimately, these findings will inform targeted antibiotic management and control strategies. ENVIRONMENTAL IMPLICATION: Antibiotics, posing threats to ecosystems and human health, exhibit pseudo-persistence in the environment. we compiled a national dataset of over 67,000 records on antibiotics, our study scrutinized antibiotic distribution in China's major river water and sediment. Through this analysis, we identified key factors influencing distribution patterns and crafted a national priority ranking for antibiotics. These findings deepen our understanding of antibiotic presence and contribute to the development of targeted management strategies aimed at minimizing environmental impact.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , China , Ríos/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Medición de Riesgo , Sedimentos Geológicos/química
5.
Water Res ; 263: 122199, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128421

RESUMEN

In areas affected by arsenicosis, zerovalent iron (ZVI)/sand filters are extensively used by households to treat groundwater, but ZVI surface passivation and filter clogging limit their arsenic (As) removal performance. Here we present a magnetic confinement-enabled column reactor coupled with periodic ultrasonic depassivation (MCCR-PUD), which efficiently and sustainably removes As by reaction with continuously generated iron (oxyhydr)oxides from ZVI oxidative corrosion. In the MCCR, ZVI microparticles self-assemble into stable millimeter-scale wires in forest-like arrays in a parallel magnetic field (0.42-0.48 T, produced by two parallel permanent magnets), forming a highly porous structure (87 % porosity) with twice the accessible reactive surface area of a ZVI/sand mixture. For a feed concentration of 100 µg/L As(III), the MCCR-PUD, with a short empty bed contact time (1.6 min), treated ca. 7340 empty bed volume (EBV) of water at breakthrough (10 µg/L), 9.4 folds higher than that of a ZVI/sand filter. Due to the large interspace between ZVI wires, the MCCR-PUD effectively prevented column clogging that occurred in the ZVI/sand filter. The high water treatment capacity was attributed to the much enhanced ZVI reactivity in the magnetic field, sustained through rejuvenation by PUD. Furthermore, most of As was structurally incorporated into the produced iron (oxyhydr)oxides (mostly ferrihydrite) in the MCCR-PUD, as revealed by Mössbauer spectroscopy, X-ray absorption spectroscopy, and sequential extraction experiments. This finding evinced a different mechanism from the surface adsorption in the ZVI/sand filter. The structural incorporation of As also resulted in much less As remobilization from the produced corrosion products during aging in water, in total ∼1 % in 28 days. Furthermore, the MCCR-PUD exihibted robust performance when treating complex synthetic groundwater containing natural organic matter and common ions (∼3700 EBV at breakthrough). Taken together, our study demonstrates the potential of the magnetic confinement-enabled ZVI reactor as a promising decentralized As treatment platform.


Asunto(s)
Arsénico , Hierro , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/química , Purificación del Agua/métodos , Hierro/química , Contaminantes Químicos del Agua/química , Agua Subterránea/química , Filtración
6.
Environ Pollut ; 358: 124511, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38977121

RESUMEN

Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.


Asunto(s)
Fluorocarburos , Larva , Pez Cebra , Animales , Fluorocarburos/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad
7.
Water Res ; 261: 122010, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986285

RESUMEN

The impact of watershed comprehensive management (WCM) on per- and polyfluoroalkyl substances (PFAS) pollution in rapidly urbanizing areas remains unclear. In a typical rapidly urbanizing watershed of Shenzhen, China, we investigated temporal variations in contamination level, primary source and ecological risk of 50 emerging and legacy PFAS, as well as the replacement trends of emerging PFAS before and after WCM during a six-year sampling campaign. We found that large-scale dredging was a non-negligible factor in abnormally increased PFAS concentrations (6.43 %-456.16 %) during WCM through their release from river sediments. To better characterize the diverse and complex PFAS contamination, a novel pollution assessment method, PFAS "diversity", was adopted based on a modified Shannon-Weiner diversity index and Pielou evenness index, reflecting numbers of PFAS detected and how evenly each PFAS contributed to the total PFAS concentrations at specific sampling sites. Importantly, we found that the Pielou evenness index can indicate and quantify abnormal pollution sources (especially point sources) along the river. The results revealed that WCM did not effectively reduce total PFAS concentrations and diversity in the rapidly urbanizing watershed but obviously improved point source pollution. Furthermore, 6:2 polyfluorinated phosphate diesters and hexafluoropropylene oxide dimer acid (GenX) that posed high ecological risks emerged and the number of sampling sites with high risk increased from 16 to 20 after WCM. Finally, we summarize several important issues related to PFAS contamination during WCM and propose specific countermeasures, such as adopting environmental dredging and reducing the proportion of ecological water replenished by wastewater treatment plant effluent for better control of PFAS pollution. Our study highlighted the limited effectiveness of WCM in mitigating PFAS pollution and the importance of emerging contaminant regulation in rapidly urbanizing watersheds during WCM.


Asunto(s)
Monitoreo del Ambiente , Fluorocarburos , Ríos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Ríos/química , China , Urbanización
8.
Innovation (Camb) ; 5(4): 100630, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38800352

RESUMEN

Photosynthetic carbon fixation by cyanobacteria plays a pivotal role in the global carbon cycle but is threatened by environmental pollutants. To date, the impact of quinones, with electron shuttling properties, on cyanobacterial photosynthesis is unknown. Here, we present the first study investigating the effects of an emerging quinone pollutant, i.e., 6PPD-Q (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone), on the cyanobacterium Synechocystis sp. over a 400-generation exposure period. Synechocystis sp. exhibited distinct sequential phases, including hormesis, toxicity, and eventual recovery, throughout this exposure. Extensive evidence, including results of thylakoid membrane morphological and photosynthetic responses, carbon fixation rate, and key gene/protein analyses, strongly indicates that 6PPD-Q is a potent disruptor of photosynthesis. 6PPD-Q accepts photosynthetic electrons at the plastoquinone QB site in photosystem II (PSII) and the phylloquinone A1 site in PSI, leading to a sustained decrease in the carbon fixation of cyanobacteria after an ephemeral increase. This work revealed the specific mechanism by which 6PPD-Q interferes with photosynthetic carbon fixation in cyanobacteria, which is highly important for the global carbon cycle.

9.
Sci Total Environ ; 929: 172455, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636871

RESUMEN

Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Medición de Riesgo , Antibacterianos/toxicidad , Monitoreo del Ambiente/métodos , Organismos Acuáticos/efectos de los fármacos , Animales , Daphnia/efectos de los fármacos
10.
Environ Sci Technol ; 58(14): 6402-6414, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38546437

RESUMEN

Limited knowledge on the structure of emerging organophosphorus compounds (OPCs) hampers our comprehensive understanding of their environmental occurrence and potential risks. Through suspect and nontarget screening, combining data-dependent acquisition, data-independent acquisition, and parallel reaction monitoring modes, we identified 60 OPCs (17 traditional and 43 emerging compounds) in effluents of 14 wastewater treatment plants (WWTPs) in Beijing and Qinghai, China. These OPCs comprise 26 organophosphate triesters, 17 organophosphate diesters, 6 organophosphonates, 7 organothiophosphate esters, and 4 other OPCs. Notably, 14 suspect OPCs were newly identified in WWTP effluents, and 16 nontarget OPCs were newly discovered in environmental matrices. Specifically, the cyclic phosphonate, (5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl dimethyl phosphonate P-oxide (PMMMPn), consistently appeared in all WWTP effluents, with semiquantitative concentrations ranging from 44.4 to 282 ng/L. Its analogue, di-PMMMPn, presented in 93% of wastewater samples. Compositional differences between the WWTP effluents of two cities were mainly attributed to emerging OPCs. Hazard and ecological risk assessment underscored the substantial contribution of chlorinated organophosphate esters and organothiophosphate esters to overall risks of OPCs in WWTP effluents. This study provides the most comprehensive OPC profiles in WWTP effluents to date, highlighting the need for further research on their occurrence, fate, and risks, particularly for chlorinated OPCs.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Organofosforados , Eliminación de Residuos Líquidos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Organofosfatos , Purificación del Agua/métodos , Ésteres , Organotiofosfatos
11.
Plant Dis ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468140

RESUMEN

Morel mushrooms (Morchella spp.) are highly regarded globally for their distinctive texture and savory flavor. In 2022, the cultivation area for morel mushrooms in China reached nearly 20,000 hectares, with predominant cultivars including M. sextelata, M. importuna and M. exima (Bian et al., 2024). In March 2022, however, deformities of friting bodies were observed in M. importna at morel mushroom farms in Huaihua city (28.43°N, 110.47°), China, with an incidence rate ranging from 5% to 10%. The disease symptoms begin with the invasion of the hymenium of morel mushroom by white cotton-like mycelia, ultimately resulting in halted fruiting body growth and the manifestation of anomalous fruiting body morphology. Infected samples were collected from the morel growers. Following sterilization with 75% ethanol of the surrounding tissue of infected samples, the white hyphae from the morel lesions were picked out using a dissecting needle, and incubated onto potato saccharose agar medium supplemented with 60 mg/L streptomycin at 25°C. Studies showed that seven out of nine fungal isolates exhibiting identical morphological features rapidly grew on the same culture medium described above, reaching a length of 75 mm in 4 to 5 days at 25°C. The white and thick hyphal colonies of these isolates gradually filled with brown spore powder. Generally, the conidia of the hyphal colonies were polyblastic with protrusions at the tips, measuring 75 to 165 × 36 to 50 µm (n = 30) in width and length, displaying colors varying from light reddish brown to grayish brown, and possessing one or five septa. To confirm the identity of the pathogen, the region of the internal transcribed spacer region (ITS), 28S nuclear ribosomal large subunit (LSU), and RNA polymerase II second largest subunit (rpb2) genes of the representative isolate H2 were amplified by PCR (Taguiam, et al. 2021). The generated ITS (OR338304), rpb2 (OR452112) and LSU (OR338334) from the isolate H2 had 98-100% similarity to the Alternaria alternata strains ATCC 6663 and CBS 880.95 in BLASTn analysis. ITS, rpb2 and LSU sequences were assembled using Sequence Matrix, and their homogeneity was assessed with PAUP (Vaidya et al., 2011). Bayesian (MrBayes-3.2.7a) and maximum-likelihood (RAxML1.3.1) methods, utilizing the best fit GTR+G+I model obtained from MrModeltest 2.3, were employed for phylogenetic analysis (Aveskamp et al. 2010). Based on morphological characteristics and phylogenetic analysis, the isolate H2 was identified as A. alternata. In the second year post-disease, disease-free morels, with a height of 3 cm, were cultivated in field greenhouses and used for test. A 15 ml suspension (1 × 106 conidia/ml) was applied to 15 young fruiting bodies and their corresponding substrate soil. The results showed that the reappearance of white cotton-like mycelia and deformed M. importuna fruiting bodies within 7 days post-inoculation with the spore suspension, as opposed to the controls. The isolates (H2-1, H2-2 and H2-3) were reisolated from the infected tissues and identified as A. alternata based on its morphological features and phylogenetic analyses. In this study, a similar investigation was previously conducted on cultivated quinoa (Chenopodium quinoa) in Eastern Denmark (Colque-Little et al., 2023). This study marks the first documentation of A. alternata causing deformities in M. importuna fruiting bodies. These deformities occur under conditions of high-temperature (>22°C) and high humidity (>88%). Our findings provide crucial insights for managing A. alternata in M. importuna cultivation in China.

12.
Clin Cosmet Investig Dermatol ; 17: 409-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371329

RESUMEN

Purpose: To investigate whether increased levels of lipids-related metabolites (LRMs) result in androgenic alopecia (AGA). Patients and Methods: A two-sample Mendelian randomization (MR) study was designed, and single nucleotide polymorphisms (SNPs) respectively related to nine LRMs were selected from the genome-wide association study (GWAS) dataset. An MR analysis was performed to assess the causal association between LRMs and AGA. Results: Through the fixed-effect inverse variance weighting (IVW) method, MR analysis indicated that Apolipoprotein B (ApoB), low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) had a causal relationship with AGA. No obvious heterogeneity or pleiotropy was observed. Conclusion: The risk of AGA increases significantly when the serum levels of ApoB, LDL, and VLDL increase. This causal relationship is solid and free of interference from confounding factors.

13.
Water Res ; 251: 121137, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246077

RESUMEN

The accumulation of antibiotics in the natural environment can disrupt microbial population dynamics. However, our understanding of how microbial communities adapt to the antibiotic stress in groundwater ecosystems remains limited. By recovering 2675 metagenome-assembled genomes (MAGs) from 66 groundwater samples, we explored the effect of antibiotics on bacterial, archaeal, and fungal communities, and revealed the pivotal microbes and their mechanisms in coping with antibiotic stress. The results indicated that antibiotics had the most significant influence on bacterial and archaeal communities, while the impact on the fungal community was minimal. Analysis of co-occurrence networks between antibiotics and microbes revealed the critical roles of Candidate Phyla Radiation (CPR) bacteria and DPANN archaea, two representative microbial groups in groundwater ecosystem, in coping with antibiotic resistance and enhancing network connectivity and complexity. Further genomic analysis demonstrated that CPR bacteria carried approximately 6 % of the identified antibiotic resistance genes (ARGs), indicating their potential to withstand antibiotics on their own. Meanwhile, the genomes of CPR bacteria and DPANN archaea were found to encode diverse biosynthetic gene clusters (BGCs) responsible for producing antimicrobial metabolites, which could not only assist CPR and DPANN organisms but also benefit the surrounding microbes in combating antibiotic stress. These findings underscore the significant impact of antibiotics on prokaryotic microbial communities in groundwater, and highlight the importance of CPR bacteria and DPANN archaea in enhancing the overall resilience and functionality of the microbial community in the face of antibiotic stress.


Asunto(s)
Agua Subterránea , Microbiota , Archaea/genética , Archaea/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Agua Subterránea/microbiología , Filogenia
14.
J Cosmet Dermatol ; 23(4): 1417-1421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38116864

RESUMEN

PURPOSE: Baricitinib is a small-molecular drug that selectively inhibits the Janus Kinase (JAK) 1 and 2. However, it showed various efficiency and safety in treating moderate-to-severe alopecia areata (AA). This study was to describe the real-world effectiveness of baricitinib in treating moderate-to-severe refractory AA. METHODS: Patients who were affected by moderate-to-severe AA and reported no shrinkage in the alopecia area after 6 months of conventional treatment were enrolled in the retrospective study. The patients were treated with baricitinib orally for at least 24 weeks. The severity of alopecia was evaluated at the end of 4, 12, and 24 weeks of treatment. RESULTS: The 32 patients included 23 females and nine males, with a median duration of AA of 14.5 months. Among them, 28 patients received baricitinib 2 mg per day for 24 weeks while the other four patients increased the daily dose from 2 to 4 mg after the first 12 weeks due to the unobvious hair restoration. SALT value showed a significant decrease from baseline at week 12 and 24 (64.45 [44.68-100.00] vs. 26.80 [13.40-62.32], p < 0.0001 and 64.45 [44.68-100] vs. 9.40 [4.85-34.95], p < 0.0001). After 24 weeks of treatment, 50% of patients had an improvement of ≥2 points in IGA scores from the baseline, and IGA scores of 68.75% of patients were less than 2. CONCLUSION: This 24-week research showed that baricitinib had favorable clinical efficacy and safety in treating moderate-to-severe AA, which is worthy of attention and expectation.


Asunto(s)
Alopecia Areata , Azetidinas , Inhibidores de las Cinasas Janus , Purinas , Pirazoles , Sulfonamidas , Masculino , Femenino , Humanos , Alopecia Areata/tratamiento farmacológico , Estudios Retrospectivos , Inhibidores de las Cinasas Janus/efectos adversos , Inmunoglobulina A/uso terapéutico
15.
Water Res ; 247: 120829, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976624

RESUMEN

Archaea, the third proposed domain of life, mediate carbon and nutrient cycling in global natural habitats. Compared with bacteria, our knowledge about archaeal ecological modes in large freshwater environments subject to varying natural and human factors is limited. By metabarcoding analysis of 303 samples, we provided the first integrate biogeography about archaeal compositions, co-existence networks, and assembling processes within a 6000 km continuum of the Yangtze River. Our study revealed that, among the major phyla, water samples owned a higher proportion of Thaumarchaeota (62.8%), while sediments had higher proportions of Euryarchaeota (33.4%) and Bathyarchaeota (18.8%). A decline of polarization in phylum abundance profile was observed from plateau/mountain/hill to basin/plain areas, which was attributed to the increase of nutrients and metals. Planktonic and benthic Bathyarchaeota tended to co-occur with both major (e.g., methanogens or Thermoplasmata) and minor (e.g., Asgard or DPANN) taxa in the non-random networks, harboring the highest richness and abundances of keystone species and contributing the most positively to edge number, node degree, and nearest neighbor degree. Furthermore, we noted significantly positive contributions of Bathyarchaeota abundance and network complexity to the dominance of deterministic process in archaeal assembly (water: 65.3%; sediments: 92.6%), since higher carbon metabolic versatility of Bathyarchaeota would benefit archaeal symbiotic relations. Stronger deterministic assembling was identified at the lower-reach plain, and higher concentrations of ammonium and aluminum separately functioning as nutrition and agglomerator were the main environmental drivers. We lastly found that the Three Gorges Dam caused a simultaneous drop of benthic Bathyarchaeota abundance, network co-existence, and deterministic effects immediately downstream due to riverbed erosion as a local interference. These findings highlight that Bathyarchaeota are a "gatekeeper" to promote fluvial archaeal diversity, stability, and predictability under varying macroscopic and microscopic factors, expanding our knowledge about microbial ecology in freshwater biogeochemical cycling globally.


Asunto(s)
Archaea , Plancton , Humanos , Archaea/genética , Sedimentos Geológicos/microbiología , Ríos/microbiología , Agua , Carbono , ARN Ribosómico 16S , Filogenia , ADN de Archaea
16.
Environ Sci Technol ; 57(45): 17439-17451, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37930269

RESUMEN

Antibiotics are anthropogenic contaminants with a global presence and of deep concern in aquatic environments, while less is known about the occurrence and risks of their transformation products (TPs). Herein, we developed a comprehensive suspect and nontarget screening workflow based on high-resolution mass spectrometry to identify unknown antibiotic TPs in wastewater treatment plant effluents. We identified 211 compounds (35 parent antibiotics and 176 TPs) at confidence levels of ≥3 and 107 TPs originated from macrolides. TPs were quantified by 17 TPs standards and semiquantified by the predicted response factors and accounted for 55.6-95.1% (76.7% on average) of the total concentrations of parents and TPs. 22.2%, 63.1%, and 18.8% of the identified TPs were estimated to be more persistent, mobile, and toxic than their parent antibiotics, respectively. Further ecological risk assessment based on concentrations and toxicity to aquatic organisms revealed that the cumulative risks of TPs were generally higher than those of parents. Despite the newly formed N-oxide TPs, the tertiary treatment process (mainly ozonation) could decrease the averaged 20.3% of concentrations and 36.2% of the risks of antibiotic-related compounds. This study highlights the necessity to include antibiotic TPs in environmental scrutiny and risk assessment of antibiotics in different aquatic environments.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Contaminantes Químicos del Agua/toxicidad , Antibacterianos , Macrólidos/análisis
17.
Environ Sci Technol ; 57(44): 16953-16963, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37886803

RESUMEN

Photogranules are dense algal-bacterial aggregates used in aeration-free and carbon-negative wastewater treatment, wherein filamentous cyanobacteria (FC) are essential components. However, little is known about the functional role of symbiotic bacteria in photogranulation. Herein, we combined cyanobacterial isolation, reactor operation, and multiomics analysis to investigate the cyanobacterial-bacterial interaction during photogranulation. The addition of FC to the inoculated sludge achieved a 1.4-fold higher granule size than the control, and the aggregation capacity of FC-dominant photogranules was closely related to the extracellular polysaccharide (PS) concentration (R = 0.86). Importantly, we found that cross-feeding between FC and symbiotic bacteria for macromolecular PS synthesis is at the heart of photogranulation and substantially enhanced the granular stability. Chloroflexi-affiliated bacteria intertwined with FC throughout the photogranules and promoted PS biosynthesis using the partial nucleotide sugars produced by FC. Proteobacteria-affiliated bacteria were spatially close to FC, and highly expressed genes for vitamin B1 and B12 synthesis, contributing the necessary cofactors to promote FC proliferation. In addition, Bacteroidetes-affiliated bacteria degraded FC-derived carbohydrates and influenced granules development. Our metabolic characterization identified the functional role of symbiotic bacteria of FC during photogranulation and shed light on the critical cyanobacterial-bacterial interactions in photogranules from the viewpoint of cross-feeding.


Asunto(s)
Chloroflexi , Cianobacterias , Aguas Residuales , Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
18.
Comput Biol Med ; 166: 107486, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37757599

RESUMEN

Bronchoscopy plays a crucial role in diagnosing and treating lung diseases. The deep learning-based diagnostic system for bronchoscopic images can assist physicians in accurately and efficiently diagnosing lung diseases, enabling patients to undergo timely pathological examinations and receive appropriate treatment. However, the existing diagnostic methods overlook the utilization of prior knowledge of medical images, and the limited feature extraction capability hinders precise focus on lesion regions, consequently affecting the overall diagnostic effectiveness. To address these challenges, this paper proposes a prior knowledge distillation network (PKDN) for identifying lung diseases through bronchoscopic images. The proposed method extracts color and edge features from lesion images using the prior knowledge guidance module, and subsequently enhances spatial and channel features by employing the dynamic spatial attention module and gated channel attention module, respectively. Finally, the extracted features undergo refinement and self-regulation through feature distillation. Furthermore, decoupled distillation is implemented to balance the importance of target and non-target class distillation, thereby enhancing the diagnostic performance of the network. The effectiveness of the proposed method is validated on the bronchoscopic dataset provided by Harbin Medical University Cancer Hospital, which consists of 2,029 bronchoscopic images from 200 patients. Experimental results demonstrate that the proposed method achieves an accuracy of 94.78% and an AUC of 98.17%, outperforming other methods significantly in diagnostic performance. These results indicate that the computer-aided diagnostic system based on PKDN provides satisfactory accuracy in diagnosing lung diseases during bronchoscopy.

19.
J Hazard Mater ; 460: 132528, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713776

RESUMEN

Wastewater treatment plants (WWTPs) are considered as hotspots for the spread of antibiotic resistome into the environment. However, the differential contributions of WWTPs to the antibiotic resistome in the receiving river water and sediment are poorly understood. Here, based on metagenomic analysis, we found that the WWTP effluents significantly elevated the diversities and abundances of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in the receiving river water from the Qinghai-Tibet Plateau, but showed less interference with the antibiotic resistome in sediment. Estimated by SourceTracker, WWTPs contributed 60.691.8% of ARGs in downstream river water, much higher than those for sediment (7.7568.0%). A holistic comparison of ARG risks based on analysis of ARG combination, mobility risk, ARG hosts and ARG-carrying pathogens further revealed the great impacts of WWTP effluents on downstream river water rather than sediment. Among various MGEs, tnpA exhibited the greatest potential for the dissemination of ARGs, and displayed highest co-occurrence frequency with multiple ARGs. P. aeruginosa, E. cloacae, and E. coli were identified as the critical-priority pathogens of ARG hosts. This study demonstrated the much greater impacts of WWTP effluents on the downstream water compared with sediment, which is significant for developing effective strategies to mitigate ARG risks.


Asunto(s)
Escherichia coli , Agua , Ríos , Medición de Riesgo , Antibacterianos/farmacología , Pseudomonas aeruginosa
20.
J Hazard Mater ; 460: 132319, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611388

RESUMEN

Mineral nanoparticles (M-NPs) are ubiquitous in aquatic environments, but their potential harms to primary producers and impacts on the toxicity of coexisting pollutants are largely unknown. Herein, the toxicity mechanisms of various M-NPs (i.e., SiO2, Fe2O3, Al2O3, and TiO2 NPs) to Synechocystis sp. in absence and presence of ciprofloxacin (CIP) were comprehensively investigated. The heteroaggregation of cells and M-NPs can hinder substrate transfer or light acquisition. The attraction between Synechocystis sp. and M-NPs increased in the order of SiO2 < Fe2O3 < Al2O3 ≈ TiO2 NPs. Therefore, SiO2 and Fe2O3 NPs exerted slight effects on physiology and proteome of Synechocystis sp.. Al2O3 NPs with the rod-like shape caused physical damage to cells. Differently, TiO2 NPs with photocatalytic activities provided photogenerated electrons for Synechocystis sp., promoting photosynthesis and the Calvin cycle for CO2 fixation. SiO2, Fe2O3, and Al2O3 NPs alleviated the toxicity of CIP in an adsorption-depended manner. Conversely, the combination of CIP and TiO2 NPs exerted more pronounced toxic effects compared to their individuals, and CIP disturbed the extracellular electron transfer from TiO2 NPs to cells. The findings highlight the different effects of TiO2 NPs from other M-NPs on cyanobacteria, either alone or in combination with CIP, and improve the understanding of toxic mechanisms of M-NPs.


Asunto(s)
Nanopartículas , Synechocystis , Humanos , Ciprofloxacina/toxicidad , Dióxido de Silicio/toxicidad , Minerales , Nanopartículas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA